

RV-8063-C8 Application Manual

デスクトップ等に保存してからご覧頂くと内部リンクが表示されるなど操作性良くなります。

アプリケーションマニュアル

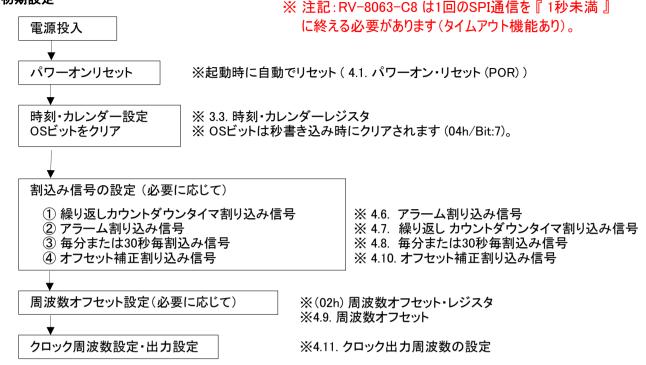
RV-8063-C8

SPIインターフェース 水晶振動子内蔵・ 超小型リアルタイムクロック

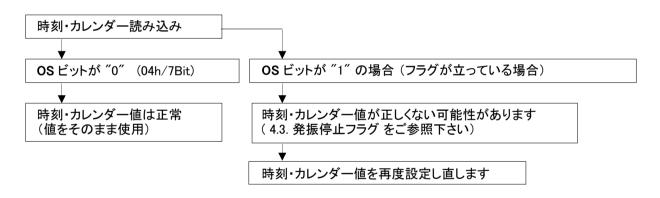
原本発行元: Microcrystal AG

原本:『RV-8063-C8 Application Manual Rev. 1.0』

(英語)原本発行日:2023年6月


日本語訳発行:株式会社多摩デバイス 営業技術部

(2025年5月26日)


June 2023 1/58 Rev. 1.0

〈RV-8063-C8 クイックスタートガイド〉

•通常動作時

割り込み信号の発生時

- ・必要に応じて割り込み信号の種別を識別 (3.2.制御レジスタ内の01hの各フラグレジスタ)
- ・必要に応じて、発生している割り込み信号フラグをクリアします。

ソフトウェア・リセットの使用

・必要に応じて起動時にソフトウェア・リセットを実施します。 (4.1. ソフトウェア・リセットをご参照下さい)

ストップ・ビットの使用

・時刻設定後にタイミングを合わせて時計クロックを動作させる場合に用います。 (4.12.ストップ・ビット機能 をご参照下さい)

目次

1.	· 1. 概要	4
	1.1. 製品の特長	4
	1.2. アプリケーション例	5
	1.3. 型番指定方法	5
2.	· ブロックダイアグラム	6
	2.1. 端子レイアウト	7
	2.2. 端子機能	7
	2.3. 機能概要	
	2.4. 回路保護ブロックダイアグラム	<i>9</i>
3.	. レジスタ構成	10
	3.1. レジスタマップ	10
	3.2. 制御レジスタ	11
	3.3. 時刻・カレンダーレジスタ	14
	3.4. アラームレジスタ	17
	3.5. タイマー・レジスタ	20
	3.6. レジスタ・リセット初期値	21
4.	· 機能詳細	22
	4.1. パワーオン・リセット (POR)	22
	4.2. ソフトウェア・リセット	22
	4.3. 発振停止フラグ	23
	4.4. 時刻・カレンダの設定と読込み	24
	4.5. 割込み信号出力	25
	4.6. アラーム機能	26
	4.6.1. アラーム割り込み信号	26
	4.7. カウントダウンタイマ機能	27
	4.7.1. タイマーフラグ TF	27
	4.7.2. タイマ割り込み信号と TI_TP (11h/0bit)	<i>2</i> 7
	4.7.3. パルスジェネレータ 2	27
	4.7.4. カウントダウンタイマの使用方法	28
	4.8. 毎分 または 30秒毎 割込み信号	30
	4.8.1. パルス・ジェネレータ1	30
	4.9. 周波数オフセット(時計クロックの補正)	
	4.9.1. オフセット補正値の算出方法	32
	4.10. オフセット補正割り込み信号	34
	4.10.1. MODE = 0 (ノーマル・モード時) のオフセット補正割り込み信号	34
	4.10.2. MODE = 1 (ファースト・モード時) のオフセット補正割り込み信号	35
	4.11. CLKOUT 端子からのクロック出力周波数の選択	36
	4.12. ストップ・ビット機能	37

SPIバス・インターフェース・超小型2012サイズ・リアルタイムクロックモジュール

RV-8063-C8

5.	SPIインターフェース	39
	5.1. シリアルバスの読込み・書込みの例	
6.	電気的特性	. 41
	6.1. 絶対最大定格	. 41
	6.2. DC特性	. 42
	6.3. 内部発振器の特性	. 45
	6.3.1. 内蔵 32.768kHz水晶振動子の温度特性	. 45
	6.4 SPIバス・インターフェース仕様	46
7.	回路設計情報	. 47
	7.1. RV-8063-C8 の標準的な動作	. 47
	7.2. RV-8063-C8にバックアップ電源を用いる場合	48
8.	パッケージ	. 49
	8.1.外形寸法及び推奨ランドパターン(寸法単位:m/m)	. 49
	8.1.1. 推奨のサーマルレリーフ設定	. 49
•	8.2.マーキング 及び Pin1インデックスマーク	. 50
9.	構成物質と環境資料情報	51
	9.1. 構成部位 及び 構成物質リスト	51
	9.2. 環境負荷物質/含有調査結果	. <i>52</i>
	9.3. 製品リサイクル情報	53
	9.4. 環境耐性 及び 最大定格 及び 電極めっき詳細	54
10.	リフローはんだ付け条件	. 55
11.	水晶振動子を搭載した製品のお取り扱い上の注意点	. 56
12.	テープ・リール図面	. 57
13.	コンプライアンス情報	58
14.	心計層麻	58

RV-8063-C8

SPI/バス・

1.

- 32.768kHz音叉型水晶振動子を内蔵したリアルタイムクロックモジュールです。
- 秒・分・時間・日・曜日・月・年の時刻カレンダー情報を提供します。
- レジスタ設定でプログラマブルな周波数オフセット機能を搭載
- うるう年を自動補正(西暦 2000年~2099年)
- アラーム割り込み信号機能(秒・分・時間・日・曜日を設定可)
- カウントダウンタイマ割り込み信号
- 毎分割り込み信号または30秒毎割込み信号機能
- 内部発振器の停止検出機能
- 内部パワーオンリセット機能
- 周辺機器向けにプログラム設定可能なクロック出力 (32.768kHz, 16.384KhZ,8.192kHz, 4.096kHz, 2.048kHz, 1.024kHz 及び 1Hz)。 CLKOE 端子でイネーブル/ディセーブル設定
- 3線 SPI バス・インターフェース (通信速度:~7MHz)
- 幅広い動作電圧 (時刻情報保持時: 0.9V~5.5V)
- 幅広いインターフェース動作電圧 (1.8V~5.5V)
- 超低消費電流動作 (時刻情報保持時:190nA)
- 動作温度範囲:-40~+85℃
- 超小型 "C8" パッケージサイズ (2.0x1.2x0.7mm), RoHS2対応済み, 100%鉛フリー対応
- 車載規格の AEC-Q200 への対応も可能です。

RV-8063-C8 はCMOS-ICを搭載し低消費電流を実現しているリアルタイムクロックモジュールです。 オフセットレジスタにより内部の時計の時刻精度を調整可能です。 マスタのマイコンとの間は SPIバス・インターフェースで通信します。レジスタアドレスはデータバイトの 書込み・読込みの後に自動でインクリメントされます。

この超小型リアルタイムクロックモジュールは小型さを求められ、かつ量産時のコストが重要なアプリケーション に適しています。 RV-8063-C8 リアルタイムクロックは標準的なRTC機能を信頼性の高いセラミックパッケージに納めています。

• 水晶内蔵では最小サイズ (3.2x1.5x0.8mm) の100%鉛フリーの超小型セラミックパッケージ

• 価格競争力

超小型で価格優位性から様々なアプリケーションに適しています。

•通信機器: loT/ウェアラブル/ワイヤレスセンサ・タグ/端末機器

•車載機器: M2M / ナビ・トラッキングシステム / ダッシュボード / タコメータ / エンジンコント

ローラ/ カーオーディオ 及び カーエンタテイメントシステム

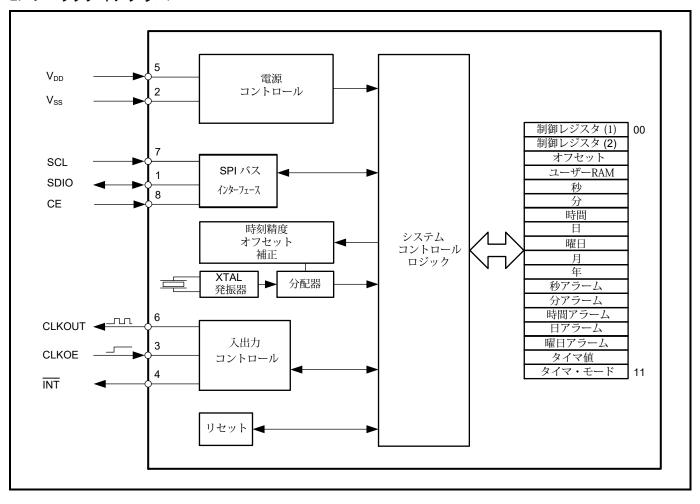
メーター機器: E-メータ / 加熱カウンタ / スマートメータ / PV コンバータ

● アウトドア機器: デジタルカメラ/ATM 及び POS / 監視・セキュリティシステム / 券売機

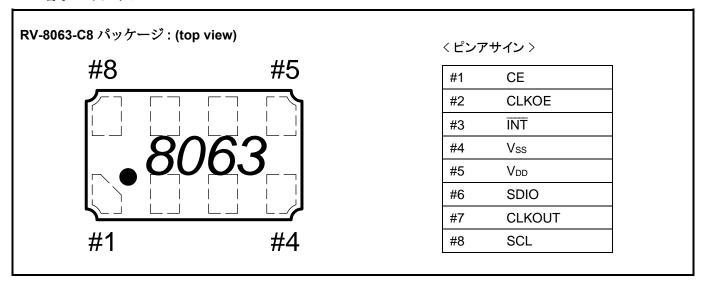
メディカル: 血糖測定器 / 健康管理システム

安全: セキュリティカメラシステム / ドアロック・アクセスコントロール民生用: ギャンブルマシーン / TV 及びセットトップボックス / 白物家電

• 自動機器: DSC / データロガ/ 家庭及び工場自動機器 / 産業用及び民生用電気製品


1.3. 型番指定方法

例: RV-8063-C8 TA QC

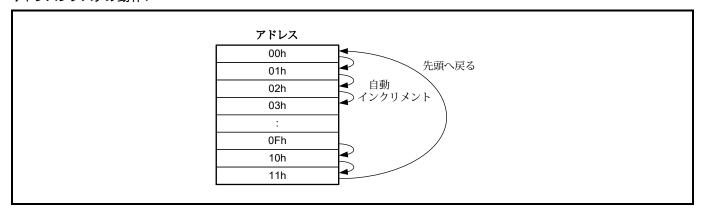

コード	動作温度範囲
TA (標準)	−40 to +85° C

コード	用途規格
QC (標準)	一般産業機器用途
QA	車載用途 (AEC-Q200)

2. ブロックダイアグラム

2.1. 端子レイアウト

2.2. 端子機能

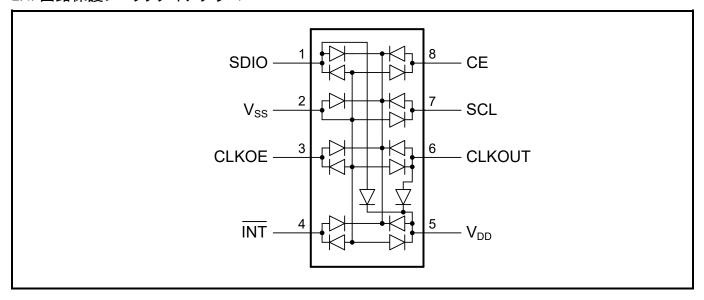

記号	Pin#	機能
CE	1	チップイネーブル入力: Lowにてインターフェースはリセットされます。 Highでイネーブルになります。 常にHigh接続としてはいけません。
CLKOE	2	CLKOUT端子のイネーブル/ディセーブル。Hiレベルで CLKOUT出力になります。この端子をGNDへ接続した場合は CLKOUT端子出力は Low になります。
ĪNT	3	①アラーム ②カウントダウンタイマ ③毎分または30秒毎 ④補正信号 の各 割り込み信号を出力します。オープンドレイン。アクティブ:Low。抵抗でプルアップ接続して下さい。
V _{SS}	4	グランド端子
V_{DD}	5	電源入力端子
SDIO	6	シリアルデータ入力・出力。 入力: CE端子が Lowの場合は フロート状態になります。 出力: プッシュプル出力; V _{ss} ~V _{DD} 間をドライブ; ドライブしていない時はハイインピーダンスです。
CLKOUT	7	クロック出力。プッシュプル出力。32.768kHz/16.384kHz/8.192kHz/4.096kHz/2.048kHz/ 1.024kHz/1Hzのいずれかの出力周波数(デフォルトは32.768kHz)。 CLKOE端子で出力制御されます。CLKOE="0"(GND)接続の場合は "Low" になります。
SCL	8	シリアルクロック入力: CE端子が Lowの時はフロートになります。

2.3. 機能概要

RV-8063-C8 は CMOS-ICを搭載した低消費電流のリアルタイムクロックモジュールです。 CMOS IC は自動インクリメントする18アドレスの8ビットレジスタ、周波数分配器から供給される時刻保持用の内部クロック、プログラマブルの外部クロック出力機能、SPIバス・インターフェース機能などがあります。 オフセットレジスタにより時計精度のデジタル補正も行えます。

内蔵レジスタはアドレスが『11h』になるまで自動的にインクリメントします。 『11h』アドレスの次は自動で『00h』アドレスに戻ります。

アドレスレジスタの動作:



全てのレジスタ(3.1.レジスタマップを参照下さい)は8ビットで構成されていますが、全てのビットに機能がある訳ではなく使用されていないビットもあります。

- 先頭の2つのレジスタは(メモリアドレス00h/01h)制御・ステータスレジスタです。
- レジスタアドレス:02hは時計精度のデジタル補正のオフセットレジスタです。
- レジスタアドレス: 03h はユーザRAMバイトです。
- レジスタアドレス:04h~0Ah は時刻・カレンダーレジスタです(秒~年まで)。
- レジスタアドレス:OBh~OFh は アラームレジスタです。
- レジスタアドレス:10h~11h は タイマ・レジスタです。

時計カレンダー情報及びアラームの時刻・日曜日設定情報はBCDフォーマットです。 RV-8063-C7 のレジスタに書込み・または読込みが行われている間は全ての時刻情報は一旦停止します。 そのため書込み・または読込み動作による誤差は1秒以内に抑えられています。

2.4. 回路保護ブロックダイアグラム

3. レジスタ構成

内部レジスタにはアドレスの指定をすることにより書込み・読込みのアクセスが出来ます。 1つのアドレス指定で複数の書込み・読み込みを行う場合は、レジスタアドレスは自動でインクリメントします。 有効なレジスタアドレスは00h~11hまでの18アドレスです。

時刻・カレンダレジスタはアプリケーションで使用しやすいシンプルなBCDフォーマットです。その他のレジスタはビット毎の機能、または一般的なバイナリフォーマットになっています。

いずれかのレジスタに書込み・または読込みのアクセスがあると時刻情報は最大1秒間一時停止します。 それにより読込み・書込みの間のエラーを防いでいます。

3.1. レジスタマップ

リセット後のレジスタ初期値については <レジスタリセット初期値> を参照下さい。

アドレス	機能	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
00h	制御レジスタ (1)	TEST	SR	STOP	S	R	CIE	12_24	CAP	
01h	制御レジスタ (2)	AIE	AF	MI	HMI	TF		FD		
02h	オフセット	MODE	MODE OFFSET							
03h	ユーザRAM		RAM data							
04h	秒	OS	40	20	10	8	4	2	1	
05h	分	Х	40	20	10	8	4	2	1	
06h	時(24時間)		х х	20	10	8	4	2	1	
UON	時(12時間)	_ ^		AMPM	10	8	4	2	1	
07h	日	Х	Х	20	10	8	4	2	1	
08h	曜日	Х	Х	Х	Х	Х	4	2	1	
09h	月	Х	Х	Х	10	8	4	2	1	
0Ah	年	80	40	20	10	8	4	2	1	
0Bh	秒アラーム	AE_S	40	20	10	8	4	2	1	
0Ch	分アラーム	AE_M	40	20	10	8	4	2	1	
0Dh	時アラーム (24時間)	۸۲ ۱۱	Х	20	10	8	4	2	1	
UDII	時アラーム (12時間)	AE_H	^	AMPM	10	8	4	2	1	
0Eh	日アラーム	AE_D	Х	20	10	8	4	2	1	
0Fh	曜日アラーム	AE_W	Х	Х	Х	Х	4	2	1	
10h	タイマカウンタ	128	64	32	16	8	4	2	1	
11h	タイマモード	Х	Х	Х	Т	D	TE	TIE	TI_TP	
Xは機能無しのビット	トで読み込むと常に "0" を返し	ます。								

3.2. 制御レジスタ

起動時に全ての制御レジスタ値をレジスタ初期値にするには、 V_{DD} 電圧レベルを 『OV』にする必要があります。確実に『OV』に出来ない可能性がある場合は、起動後にソフトウェアリセットを実施します。 (ソフトウェアリセットの項をご参照下さい)

00h - 制御レジスタ(1)

制御・ステータスレジスタ(1).

アドレス	機能	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
00h	制御レジスタ 1	TEST	SR	STOP	S	R	CIE	12_24	CAP				
0011	リセット値	0	0	0	0								
Bit	記号	値	内容										
7	TEST	0	通常モー	ド									
,	1231	1	メーカーテストビット (使用しないで下さい)										
			ソフトウェアリセット (ソフトウェアリセットの項をご参照下さい)										
6	SR	0	ソフトウェアリセット 無し										
		1				のビットは誘 1000 (58h)							
	OTO D		' ソフトウェアリセット時には, 01011000 (58h) を00hアドレスへ書込みます。 STOP ビット (STOPビット機能の項を参照下さい)										
_		0		計クロック									
5	STOP	1	内部の時計クロックを停止; 内部クロック分配チェーンフリップ 1 のF2~F14(4.096kHz~1Hz)のプリスケーラが非同期でロジック トされます。32.768kHz,/16.384kHz/8.192kHzは動作し続けま										
			ソフトウェ	・の項をご参照下さい)									
4:3	SR	00	ソフトウェアリセット 無し										
0	.o or	11				のビットは読 1000 (58h)							
		補正割	り込み信号										
2	CIE	0											
_		1	毎回の補	正サイクル	毎に補正割	り込み信号	を出力させ	る					
		12時間/	24時間モー	- ド (時刻カ	レンダーレ	<i>、</i> ジスタ・ア	'ラームレシ	^ブ スタをご参	参照下さい)				
1	12_24	0	24時間モ	ードを選択	(0~23)								
		1	1 24時間モードを選択 (1~12)										
0	CAP	0	必ず "0"	として下さ	^°ر ۲								

SPIバス・インターフェース・超小型2012サイズ・リアルタイムクロックモジュール

RV-8063-C8

01h - 制御レジスタ(2)

制御・ステータスレジスタ(2).

アドレス	機能	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit (
01h	制御レジスタ (2)	AIE	AF	MI	HMI	TF		FD					
UIII	リセット値	0	0	0	0	0	0	0	0				
Bit	記号	値				内容							
		アラ	ーム割り込	み信号設定	ミ(アラーム	割り込み信	号の項をこ	参照下さい	١)				
7	AIE	0											
		1	1 1 2 7 7										
							D項をご参照	買下さい)					
6	AF	0 読込みの場合:アラームフラグが非アクティブ 事込みの場合:アラームフラグをクリア											
· ·		書込みの場合:アラームフラグをクリア 読込みの場合:アラームフラグがアクティブ 読込みの場合:アラームフラグがアクティブ またないの場合:アラームフラグがアクティブ またないの場合:アラームフラグがアクティブ またないのような またないのような またないのような またないの場合:アラームフラグを入れる またないの場合:アラームフラグを入れる またないの場合:アラームフラグを入れる またないのような またないのようないのような またないのような またないのようない またないのような またないのよな											
		1	書込みの場合: アラームフラグは書き換わりません(アクティブのまま										
		毎分割	り込み信号	号の設定 (毎	分・30秒年	割込み信号	号の項を参	照下さい)					
5	MI	0	·										
		1											
		30秒年	生 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	早の設定 (毎分・3 0 秒	毎割込み信	是の頂を参	昭下さい)					
4	НМІ	30秒毎割り込み信号の設定 (毎分・30秒毎割込み信号の項を参照下さい) 0 ディセーブル											
7		0											
		1 イネーブル タイマーフラグ (カウントダウンタイマ機能の項を参照下さい)											
			タイマー	フラグ (カワ	ウントダウ <i>、</i>	ンタイマ機	能の項を参	照下さい)					
3	TF	0	0 タイマ割り込み信号は発生していません										
		1	タイマ割り込み信号が発生している状態										
2:0	FD	000 ~ 111	クロック	出力周波数	(クロック)	出力周波数	の設定の項	を参照下さ	い)				
FD	5 · · · · · · · · · · · · · · · · · · ·												
	クロック出力周波数 32.768 kHz – 初期値												
000	32.768 KHZ — 初期個 16.384 kHz												
010	8.192 kHz												
010	4.096 kHz												
100	2.048 kHz												
101	1.024 kHz												
110	1 Hz ⁽¹⁾												
111	CLKOUT = LOW (出力無	し)											
Hz 出力は時季	 補正信号の影響を受けます (-	フセット婦	正の頂をで	・・・) <u>)</u>							

02h - オフセット・レジスタ

このオフセット・レジスタは周波数初期値、または経年変化値をデジタル補正するためのものです。 (オフセット補正 の項をご参照下さい).

アドレス	機能	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit (
001-	オフセット	MODE				OFFSET	<u> </u>		ı	
02h	リセット値	0	0	0	0	0	0	0	0	
Bit	記号	値				内容				
			I.		オフ・	zット・モー	ード			
7	MODE	0	0 ノーマル・モード: オフセット補正が 2時間に一回行われます							
		1	ファース	ト・モード	:オフセ	ノト補正が 4	4分に一回行	われます タ		
6:0	OFFSET	-64 to +63	オフセット値 MODE=0 の場合は LSBの分解能:約4.34ppm, MODE=1の場合は分解能 約4.069ppmになります。4.34ppm及び4.069ppmは32.768kHzの値に づきます。オフセット値は2の補数でコードされて+63LSB~-64LSBま の値です。 (時計精度のオフセット補正 の項をご参照下さい)							
OFFSET 書込み値	符号なしの値		(*	2 の補数値 捕正ステップ						
0111111	63			+63		+	273.420	+25	6.347	
0111110	62			+62		+	269.080	+25	2.278	
:	:			:			:		:	
0000001	1			+1			+4.340	+4	.069	
0000000	0			0			0		0	
			-1				-4.340	-4	.069	
1111111	127			-1			-4.040			
1111111	127 126			-2			-8.680		.138	
				•						
				•		-		-8		

⁽¹⁾ 最適な周波数オフセット値は CLKOUT端子からのクロック周波数を測定することにより算出することが出来ます。 (オフセット周波数の計算方法 の項を参照下さい)

03h - ユーザーRAM

フリーのRAMバイトです。システムのステータス値など、多目的用途に使用できます。

アドレス	機能	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
03h	ユーザーRAM	RAM data										
USII	初期値	0	0	0	0	0	0	0	0			
Bit	記号	値 内容										
7:0	RAM	00h ~ FFh	User RAM	Л								

3.3. 時刻・カレンダーレジスタ

04h - 秒

時刻の秒の情報を保持します。BCDフォーマット。値は "00~59" まで。

アドレス	機能	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
04h	秒	OS	40 20 10 8 4						1		
0411	リセット値	1	0	0	0	0	0	0	0		
	1										
Bit	記号	値			1	内容					
		発振停止検出ビット (発振停止フラグの項を参照下さい)									
7	os	0	内部発振器の停止は検出されていません。								
·	1	1 時刻精度が劣化している可能性があります; 内部発振器の停止が検出されています(リセット初期値)。									
6:0	Seconds	00 ~ 59		の値。 BCD							

^{*}OSフラグは起動時はパワーオンリセットで"1"となっていますので、ソフトウェアで "0" にクリアして下さい。

05h - 分

時刻の分の情報を保持します。BCDフォーマット。値は "00~59" まで。

アドレス	機能	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
05h	分	Х	40	20	10	8	4	2	1
0311	リセット値	0	0	0	0	0	0	0	0
Bit	記号	値			ļ	内容			
7	X	0	未使用ビット						
6:0	Minutes	00 ~ 59	時刻の分の値。 BCDフォーマット。						

時刻の時間の情報を保持します。BCDフォーマット。12_24ビットがクリアされている場合(リセット初期値)値は " $0\sim23$ " まで(制御レジスタ, 00h-制御レジスタ(1)を参照下さい)。 12_24ビットがセットされている場合は、" $1\sim12$ " まで。

AMPMビットは午前(AM)の場合は "0", 午後(PM)の場合は "1" になります。

アドレス	機能	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
	時間 (24時間モード) - リセット初期値	Х	Х	20	10	8	4	2	1	
06h	時間 (12時間モード)			AMPM	10	8	4	2	1	
	リセット値	0	0	0	0	0	0	0	0	
時間 (24時間モード)	*12_24 = 0 - リセット初期値									
Bit	記号	値	内容							
7:6	X	0	未使用ビ	ット						
5:0	時間 (24時間モード) – リセット初期値	0 ~ 23	時刻の時	間の値 (24月	時間表記)。	BCDフォー	ーマット。			
時間 (12時間モード)	*12_24 = 1 - リセット初期値									
Bit	記号	値				内容				
7:6	X	0	未使用ビ	ット						
E	AMDM	0	午前 (AM)							
5	AMPM	1	午後 (PM)							
4:0	時間 (12時間モード)	1 ~ 12	時刻の時間の値 (12時間表記)。 BCDフォーマット。							

暦の日の情報を保持します。BCDフォーマット。値は "00~31" まで。うるう年は2000年~2099年までは自動で補正されます。

アドレス	機能	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
07h	日	Х	Х	20	10	8	4	2	1
0711	リセット値	0	0	0	0	0	0	0	1
Bit	記号	值				内容			
7:6	Х	0	未使用ビ	ット					
5:0	Date	01 ~ 31	暦の日の値。 BCDフォーマット。初期値 = 01 。						

08h - 曜日

暦の曜日の情報を保持します。どの値をどの曜日にするかはユーザで決定します。 値は "0~6" まで。

アドレス	機能	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
001-	曜日	X	Х	Х	Х	Х	4	2	1
08h	リセット値	0	0	0	0	0	1	1	0
Bit	記号	値				内容			
7:3	Х	0	未使用ビット						
2:0	Weekday	0 to 6	暦の曜日の値。						
Weekday		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
曜日 1							0	0	0
曜日 2							0	0	1
曜日 3							0	1	0
曜日 4		0	0	0	0	0	0	1	1
曜日 5							1	0	0
醒日 6 醒日 7 – 初期リセット値							1	0	1
唯口 0									

SPIバス・インターフェース・超小型2012サイズ・リアルタイムクロックモジュール

RV-8063-C8

09h - 月

暦の月の情報を保持します。BCDフォーマット。値は "01~12" まで。

アドレス	機能	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
00h	月	Х	Х	Х	10	8	4	2	1
09h	リセット値	0	0	0	0	0	0	0	1
Bit	記号	値				内容			
7:5	Х	0	未使用ビット						
4:0	Month	01 ~ 12	暦の月の値。BCDフォーマット。						
Month		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1月 – リセット初	J期値				0	0	0	0	1
2月					0	0	0	1	0
3月					0	0	0	1	1
4月					0	0	1	0	0
5月					0	0	1	0	1
6月			0		0	0	1	1	0
7 月		0	0	0	0	0	1	1	1
8月					0	1	0	0	0
9月					0	1	0	0	1
10月					1	0	0	0	0
11月					1	0	0	0	1
12月					1	0	0	1	0

0Ah - 年

暦の年の情報を保持します。BCDフォーマット。値は "00~99" まで。 うるう年は2000年~2099年までは自動で補正されます。

アドレス	機能	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0Ah	年	80	40	20	10	8	4	2	1
UAII	リセット値	0	0	0	0	0	0	0	0
Bit	記号	値			1	内容			
7:0	Year	00 ~ 99	暦の西暦年の値(下二桁)。BCDフォーマット。						

3.4. アラーム・レジスタ

0Bh - 秒アラーム

秒アラーム有効ビット (AE_S) と秒アラーム設定値。BCDフォーマット。値は "00~59" まで。

アドレス	機能	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
ODb	秒アラーム	AE_S	40	20	10	8	4	2	1	
0Bh	リセット値	1	0	0	0	0	0	0	0	
			山穴							
Bit	記号	値	内容							
			秒ア	'ラーム有効	カビット(フ	'ラーム機能	もの項をご参)	
7	AE_S	0	秒アラー、	ムが有効						
		1	秒アラー.	ムが無効 - ね	初期値					
6:0	Seconds Alarm	00 ~ 59	秒アラー、	ム設定値。	BCDフォー	マット。				

OCh - 分アラーム

分アラーム有効ビット (AE_M) と分アラーム設定値。BCDフォーマット。値は "00~59" まで。

アドレス	機能	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0Ch	分アラーム	AE_M	40	20	10	8	4	2	1	
UCII	リセット値	1	0	0	0	0	0	0	0	
			. J. prin							
Bit	記号	値	内容							
			分プ	アラーム有効	カビット (フ	アラーム機能	もの項をご	参照下さい)	
7	AE_M	0	分アラー、	ムが有効						
		1	分アラー	ムが無効 - ね	初期値					
6:0	Minutes Alarm	00 ~ 59	分アラー	ム設定値。I	BCDフォー	マット。				

ODh - 時間アラーム

時間アラーム有効ビット (AE_H) と時間アラーム設定値。BCDフォーマット。

値は " $00\sim59$ " まで。 12_24 ビットがクリアされている場合(リセット初期値)値は " $0\sim23$ " まで。

(制御レジスタ,00h-制御レジスタ(1)を参照下さい)。

12_24ビットがセットされている場合は、"1~12"まで。

AMPMビットは午前(AM)の場合は "0", 午後(PM)の場合は "1" になります。

アドレス	機能	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	時間アラーム (24時間モード) —初期値	AE H	Х	20	10	8	4	2	1		
0Dh	時間アラーム (12時間モード)	AC_H	^	AMPM	10	8	4	2	1		
	リセット値	1	0	0	0	0	0	0	0		
時間アラーム (24	時間モード 12_24 = 0 - 初期	刀期値)									
Bit	記号	値				内容					
			時間アラーム有効ビット (アラーム機能の項をご参照下さい)								
7	AE_H	0	時間アラームが有効								
		1	時間アラ	ームが無効	一初期値						
6	X	0	未使用ビ	ット							
5:0	Hours Alarm (24 hour mode) – default value	00 to 23	時間アラ	ーム設定値	。BCDフォ	ーマット。					
時間アラーム (12)	時間モード 12_24 = 1)										
Bit	記号	値				内容					
			時	間アラーム	有効ビット	(アラーム	機能の項を	で参照下さ	(い)		
7	AE_H	0	時間アラ	ームが有効							
		1	時間アラ	ームが無効	一初期値						
6	X	0	未使用								
5	AMPM	0	午前 (AM)								
J		1	午後 (PM)								
4:0	Hours Alarm (12 hour mode)	01 ~ 12	9 時間アラーム設定値。BCDフォーマット。								

0Eh - 日アラーム

日アラーム有効ビット (AE_D) と日アラーム設定値。BCDフォーマット。値は "00~31" まで。

アドレス	機能	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0Eh	Date Alarm	AE_D	Х	20	10	8	4	2	1
UEII	Reset	1	0	0	0	0	0	0	0
Bit	記号	值	内容						
			E	アラーム有	i効ビット(アラーム機	能の項をこ	ご参照下さい	١)
7	AE_D	0	日アラー	ムが有効					
		1	日アラー	ムが無効 -	-初期値				
6	Х	0	未使用ビット						
5:0	Date Alarm	01 to 31	日アラー	ム設定値。	BCDフォー	マット。		•	

OFh - 曜日アラーム

曜日アラーム有効ビット (AE_W) と曜日アラーム設定値。BCDフォーマット。値は "0~6" まで。

アドレス	機能	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0Fh	Weekday Alarm	AE_W	Х	Χ	Х	Х	4	2	1
UFII	Reset	1	0	0	0	0	0	0	0
			内容						
Bit	記号	値	内容						
			曜日	日アラーム	有効ビット	・(アラーム	機能の項を	:ご参照下さ	(い)
7	AE_W	0	曜日アラー	-ムが有効					
		1	曜日アラー	-ムが無効	一初期値				
6:3	X	0	未使用ビット						
2:0	Weekday Alarm	0 ~ 6	曜日アラーム設定値。BCDフォーマット。						

3.5. タイマー・レジスタ

10h - タイマカウントダウン値

カウントダウンタイマの現在値。タイマ終了時には設定したタイマカウント値に戻ります。

アドレス	機能	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
10h	タイマカウントダウン値	128	64	32	16	8	4	2	1
TON	リセット値	0	0	0	0	0	0	0	0
Bit	記号	値			1	内容			
7:0	Timer Value	00h ~ FFh	タイマカ	ョウントダウ	ン値の現在	E値 (カウン	トダウンタイ	マの項をご参	※照下さい)

■タイマ設定時間(単位:秒):

11h - タイマ・モード

カウントダウンタイマの設定を行います。

アドレス	機能	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
11h	タイマ・モード	Х	Х	Х	Т	D	TE	TIE	TI_TP		
TIN	Reset	0	0	0	1	1	0	0	0		
Bit	記号	値				内容					
7:5	X	0	未使用ビ	ット							
		カウン	/トダウンタ	イマの基準	『周波数 (カ	ウントダウ	ンタイマの	項をご参照	下さい) (
		00	- 13000								
4:3	TD	01	01 64 Hz ⁽²⁾								
		10									
		11	1/60 Hz -	- 初期値 ⁽²⁾							
			2	タイマーの動	動作・非動作	作設定					
2	TE	0	1/60 Hz – 初期値 ⁽²⁾ タイマーの動作・非動作設定 カウントダウンタイマ を 非動作 – 初期値								
		1	カウント	ダウンタイ	マを動作						
			2	タイマ割りぇ	込み信号の記	設定					
1	TIE	0	タイマ割	り込み信号	を発生させ	ない — 初期	明値				
		1	タイマ割	り込み信号	を発生させ	る					
		,	タイマ割り	入み信号の	モード設定						
						。 定による割	り込み信号	くの影響は	t		
0	TI_TP		_ 」ウントダウ								
		0) インターバルモード。TFフラグ発生時に割り込み信号が発生します (初期値)。								
		1	パルスモード。INT端子からクロックパルスを発生させます。								
(1) タイマ未使用時	には <td>フィールドを 11</td> <td>(1/60 Hz) として</td> <td>消費電流を</td> <td>抑えること</td> <td>を推奨しま</td> <td>ます。</td> <td></td> <td></td> <td></td>	フィールドを 11	(1/60 Hz) として	消費電流を	抑えること	を推奨しま	ます。				

⁽²⁾ タイマ時間は時計精度補正パルスの影響を受けます (64Hzの場合は MODE=1 の場合のみ)。 オフセットの項をご参照下さい。

3.6. レジスタ・リセット初期値

アドレス	機能	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
00h	制御・ステータス (1)	0	0	0	0	0	0	0	0
01h	制御・ステータス (2)	0	0	0	0	0	0	0	0
02h	オフセット	0	0	0	0	0	0	0	0
03h	ユーザ RAM	0	0	0	0	0	0	0	0
04h	秒	1	0	0	0	0	0	0	0
05h	分	0	0	0	0	0	0	0	0
06h	時間 (24H/12H)	0	0	0	0	0	0	0	0
07h	日	0	0	0	0	0	0	0	1
08h	曜日	0	0	0	0	0	1	1	0
09h	月	0	0	0	0	0	0	0	1
0Ah	年	0	0	0	0	0	0	0	0
0Bh	秒アラーム	1	0	0	0	0	0	0	0
0Ch	分アラーム	1	0	0	0	0	0	0	0
0Dh	時間アラーム (24H/12H)	1	0	0	0	0	0	0	0
0Eh	日アラーム	1	0	0	0	0	0	0	0
0Fh	曜日アラーム	1	0	0	0	0	0	0	0
10h	タイマカウントダウン値	0	0	0	0	0	0	0	0
11h	タイマ・モード	0	0	0	1	1	0	0	0

RV-8063-C8 リセット初期値:

時刻 (hh:mm:ss) = 00:00:00 日付 (YY-MM-DD) = 00-01-01 曜日 = Weekday 7

モード = RTCクロック動作・24時間モード

端子設定 = クロック出力周波数= 32.768 kHz (CLKOE がHiの場合)

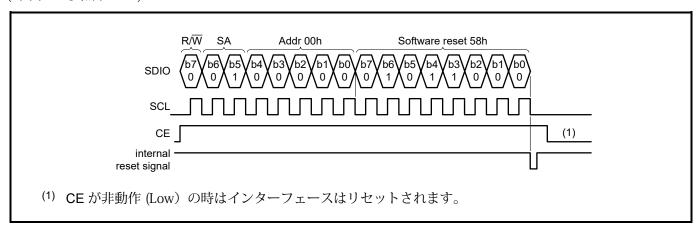
オフセット = 0 アラーム = 非動作

タイマ = 非動作;タイマ周波数 = 1/60Hz

割込み信号 = 非動作

4. 機能詳細

4.1. パワーオン・リセット (POR)

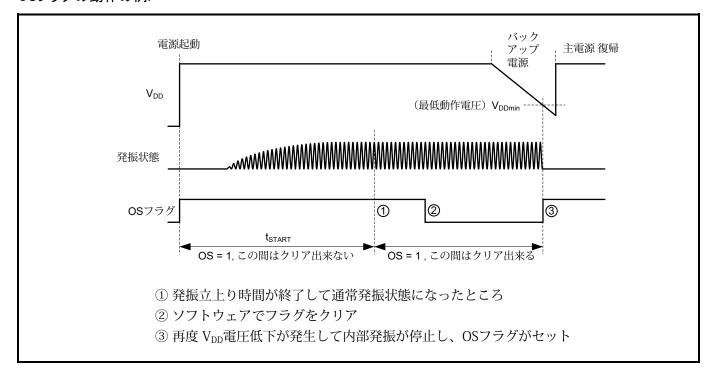

パワーオン・リセット(POR)は起動時に実行されます カウンタ・レジスタも含めて全てのレジスタはレジスタ・リセット初期値に設定されます(レジスタ・リセット初期値の項を参照下さい)。短時間の電源断から再起動する場合などに、わずかに V_{DD} に電圧が残っていると正しくパワーオン・リセットがかからない場合があります。ただしくパワーオン・リセットがかかりレジスタが初期値に戻るようにするためには、起動時の電圧を確実にOVにするようにして下さい。

もしパワーオン・リセットが確実にかからない可能性がある場合は、起動し電源が安定した後に、ソフトウェア・ リセットを行うシーケンスにすることで確実にレジスタをリセット初期値に戻せます。

4.2. ソフトウェア・リセット

パワーオン・リセットの代わりに、レジスタへの書込みで ソフトウェア・リセットを行えます。 ソフトウェア・リセットは、00h (制御レジスタ (1)) の 6,4,3ビットを "1"、その他のビットを "0"として、01011000 (58h) と書き込むと実施されます。

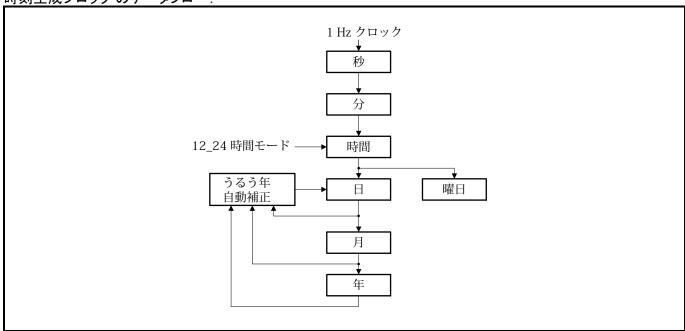
(下表をご参照下さい)


リセットが実施されている間は全てのレジスタはリセット初期値(レジスタリセット値の項を参照下さい) にセットされ、アドレス・ポインタはいずれのアドレスもポイントしなくなります。

4.3. 発振停止フラグ

RV-8063-C8 の内部発振器が停止すると、発振停止フラグ (OS) がセットされます。 電源投入からの発振立上りの間 (start-up time/ t_{START}) は発振停止状態と判断されます。 この発振立上り時間(t_{START}) は、温度や電源の立上り特性にも依存しますが 200ms Typical /2s Max のレンジです。

OSフラグは起動後には必ずセットされ、コマンドでクリアされるまで残り続けます(下表をご参照下さい)。 もしフラグがコマンドでクリアできない場合は、内部発振器が停止しています。 このOSフラグを確認することで内部発振器の動作状態と、それまでの間にV_{DD}の電圧降下による発振停止が発生していないかの確認をすることが出来ます。

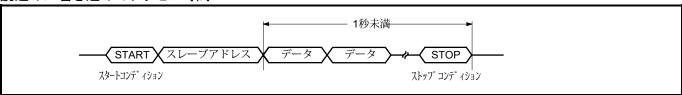

OSフラグの動作の例:

4.4. 時刻・カレンダの設定と読込み

以下のブロック図は内部発振器から分周された1Hzから時刻情報が生成されるまでの構成です。

時刻生成ブロック のデータフロー:

読込み/書込み動作の間は時刻カウントのレジスタ (04hから0Ahまで) は1 秒間一時停止します。

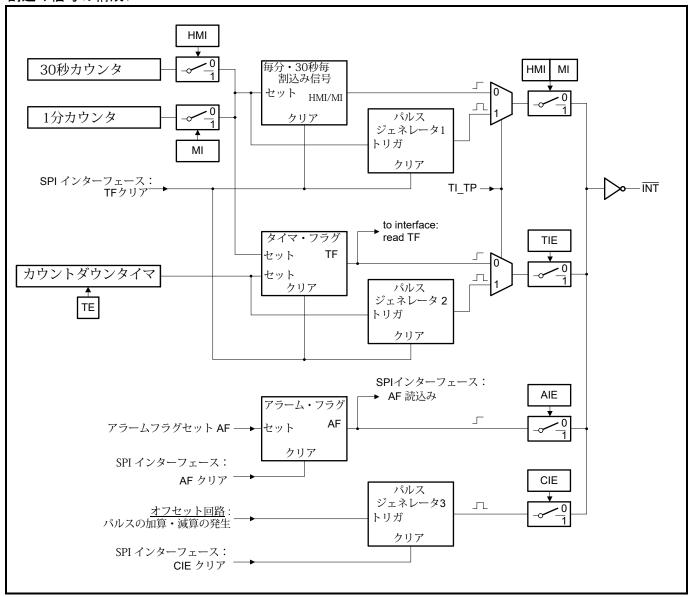

この一時停止により以下のエラーを回避しています。

- 時刻情報読込みの間の値の読み取りのエラー
- 時刻読込みの間に時刻が繰り上がってしまうエラー

読込み/書き込みのアクセスのが1秒以内(t<1s)に終了した際に、時刻生成ブロックは即座に一時停止を解除して読込み/書込み間に保留されていた時刻のインクリメントを再開します。最大で1秒分のインクリメントを保持します。もし読込み/書込み動作が1秒以上続いた場合は、時刻生成ブロックは1秒後に自動的に一時停止を解除して、1秒分のインクリメントを失わない様に動作します。

そのためインターフェース通信は『1秒以内』に終了するようにして下さい。(下表をご参照下さい)

読込み/書き込みのアクセス時間:


時刻・カレンダー情報(秒~年まで)の読込み/書き込みは一回のアクセスで行うことが重要です。 このスキーム通りに読込み/書込み動作をしなかった場合は時刻情報が異常になる可能性があります。

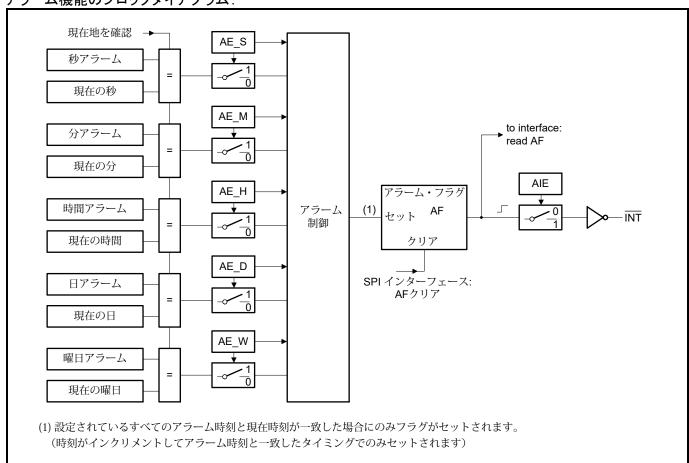
4.5. 割込み信号出力

INT端子からの割込み信号は以下の4つの機能からトリガされます。

- アラーム機能
- カウントダウンタイマ機能
- 毎分または30秒毎割込み信号機能
- 時刻補正信号の割込み信号機能

割込み信号の構成:

4.6. アラーム機能


アラームレジスタのアラームイネーブルビット (AE_x) をクリアすることにより、それに対応したアラームのコンディションはアクティブになります。

アラームが発生するとアラームフラグ (AF) は "1" にセットされます。

セットされたアラームフラグはINT端子からアラーム割り込み信号を発生させるために使用されます。 このフラグはコマンドによりクリアされます。アラームはOBhからOFhまでのレジスタで設定されます。秒・分・時間・日・曜日のいずれか一つ以上の時刻が設定されて、かつ アラームイネーブルビット (AE_x) が "0"となっている場合には現在の時刻情報と比較されます。アラーム設定時刻と現在時刻が一致するとアラームフラグが"1"にセットされます。

(制御レジスタ(2)(01h)のAFフラグをご参照下さい)

アラーム機能のブロックダイアグラム:

アラーム割り込み信号の出力はAIEビットで設定されます。AIEビットがイネーブルになっている場合には、INT端子からのアラーム割り込み信号の出力は AFビット(アラームフラグビット)の状態に追随します。アラームフラグは SPIインターフェース経由でクリアされるまで残ります。 一旦クリアされた後に再度次回アラーム条件が揃うと再度フラグがセットされます。アラームレジスタの AE-x ビットが "1" (1=ディセーブル)に設定されているアラーム項目は無視されます。

4.7. カウントダウンタイマ機能

4.7.1.タイマーフラグ TF

タイマフラグ(TFビット)はカウントダウンタイマ、または毎分及び30割込み信号の最初のトリガです。 このフラグにより割込み信号発生時に、どの割込み信号(アラーム/タイマ/毎分または30秒毎割込み信号)が発生したかを確認することが出来ます。このフラグも SPIインターフェース経由で読込み及びクリアが出来ます。 TI_TP(タイマレジスタ/11h タイマモードの項をご参照下さい)の設定次第でタイマーフラグ(TF) の状態で INT端子からの割り込み信号が発生します。

4.7.2.タイマ割り込み信号とTI_TP(11h/0bit)

・TI TP = 0: インターバルモードの場合

- TFがクリアされない場合は最初のカウントダウン終了後に1回割り込み信号が発生します。
- INT端子からの割り込み信号は タイマフラグ (TF)の状態に追随します。
- タイマフラグ (TF)は SPI インターフェース経由でクリアされるまでセットされ続けます。
- もしTFが次のカウントダウン終了までにクリアされなかった場合は、割り込み信号の発生はありません。

•TI TP = 1: パルスモードの場合

- カウントダウンタイマは繰り返し動作し一定間隔で割り込み信号を発生させます。
- INT端子からの割り込み信号は タイマフラグ (TF) の状態にかかわらず出力します。
- タイマフラグ (TF)は SPI インターフェース経由でクリアされるまでセットされ続けます。
- タイマフラグ (TF)は INT端子出力に影響しません。

4.7.3.パルスジェネレータ 2

タイマ・パルスモードがアクティブの時 (TI_TP = 1)、カウントダウンタイマの < パルスジェネレータ 2 > は内部の発振器を基準として、タイマクロック周波数及びタイマ設定値の値を使用します。 そのため、割り込み信号のパルス幅は値により変わってきます(下表をご参照下さい)。 このパルス幅はオフセット・モードの影響は受けません。タイマフラグ (TF) とINT端子出力は同期します。

カウントダウンタイマでINT端子出カパルスを使用する際のパルス幅:

タイマ基準周波数	INT端子出力パルス幅			
ノイ (タイマ値 = 1 の場合 ⁽¹⁾	タイマ値 > 1 の場合 ⁽¹⁾		
4.096 kHz	122 µs	244 μs		
64 Hz	7.812 ms	15.625 ms		
1 Hz	15.625 ms	15.625 ms		
1/60 Hz	15.625 ms	15.625 ms		
(1) タイマ値 = 現在のカウントダウンタイマ値。 タイマが停止した時の値は 0 になります。				

4.7.4.カウントダウンタイマの使用方法

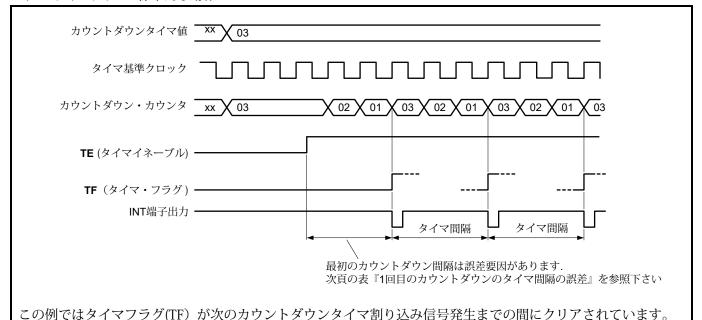
カウントダウンタイマは4つの基準周波数とカウントダウン値の組み合わせで、"244µs~4時間15分"までの時間を設定できます。4時間15分以上の間隔が必要な場合はアラーム機能のご使用をご検討下さい。

タイマ基準周波数 とタイマ間隔:

		タイマ 間隔			
TD	タイマ基準周波数 (1)	最小間隔 タイマ設定値 = 1	最大間隔 タイマ設定値 = 255		
00	4.096 kHz	244 μs	62.256 ms		
01	64 Hz ⁽²⁾	15.625 ms	3.984 秒		
10	1 Hz ⁽²⁾	1 秒	255 秒		
11	1/60 Hz ⁽²⁾	60 秒	4 時間 15 分		

(1) タイマ未使用時には <TD>フィールドを 11 (160 Hz) として消費電流を抑えることを推奨します。

(2) タイマ時間は時計精度補正パルスの影響を受けます(64Hzの場合は MODE=1 の場合のみ) オフセットの項をご参照下さい。


これらの全てのタイミングの基準は内部の32.768kHzの発振器です。そのため32.768kHz発振器特有の2次曲線の温度特性の影響を受けます。

(@+25℃の常温偏差は±20ppm以内, 温度特性は @- 40~+85℃の範囲では 最大で - 150ppm)

タイマは10hアドレスのタイマ値からカウントダウンします。タイマ値の有効値は "1~255" までです。タイマ値が "0" になるとタイマは停止します。

タイマカウンタが "1" になった後はタイマフラグ (TFビット) がセットされて、カウンタは自動的にリロードし再度カウントダウンを開始します。

カウントダウンタイマの標準的な動作:

現在のカウントダウンが終了する前に新たにカウントダウンタイマ値が書き込まれた場合は、新しい値が即座に有効になります。タイマ設定を変更する場合は、先にTEビットを "0" としてカウントダウンタイマをディセーブルとしてから設定変更を行うことを推奨します。タイマ値の変更は、タイマ基準クロックと同期していないため、TEビット=0 としないで設定変更を行うと、カウントダウン・カウンタに誤った値がロードされてしまう可能性があります。そうなると初回のカウントダウンのタイマ間隔が不定になってしまいます。ただしその後の2回目以降は正しいカウントダウンタイマ間隔がロードされます。

また、TI TPビット = 1 (パルスモード) の設定になっています。

タイマフラグ (TF) がセットされると、タイマ割り込み信号が有効になっている場合は、INT端子から割り込み信号が発生します(割り込み信号の項をご参照下さい)。

タイマの1回目のカウントダウンの際にはタイマ間隔に誤差要因があります。この誤差は SPI 経由でのイネーブルのコマンド送信のタイミングと、タイマ基準クロック(内部の発振器基準)が同期していないことに依ります。 2回目以降のカウントダウンではこの誤差は生じなくなります。1回目のカウントダウン時の、タイマ基準周波数毎の誤差範囲は下表の通りになります。

1回目のカウントダウンのタイマ間隔の誤差(カウントダウンタイマ値 = n) (1):

TD	タイマ基準周波数	1回目のカウント		
TD	アイト至中川仮奴	最小値	最大値	タイマ間隔
00	4.096 kHz	(n – 1) * 244 μs	n * 244 μs	n * 244 μs
01	64 Hz	(n - 1) * 15.625 ms	n * 15.625 ms	n * 15.625 ms
10	1 Hz	(n - 1) * 1 s + 265 ms	(n-1) * 1 s + 280 ms	n * 1 s
11	1/60 Hz	(n-1) * 60 s + 59.212 s	(n - 1) * 60 s + 59.216 s	n * 60 s
(1) カウントダウンタイマ値は $1\sim255$ 。カウンタ値が 0 になると停止します。				

タイマのカウントダウンタイマが終了する毎にタイマフラグ(TFビット)はセットされます。TFビットはSPIインターフェースでの書込みでのみクリアできます。タイマフラグをNT端子からの割り込み信号を出力させることに使用出来ます。INT端子から毎回のカウントダウン終了後に割り込み信号を発生させるか、TFフラグをクリアしないことで持続的に割り込み信号を発生させ続けることも出来ます。TI_TPビットでは、インターバル・モードとパルス・モードを設定出来ます(タイマ割り込み信号と TI_TP(11h/0bit)をご参照下さい)。またTIEビットによりタイマ割り込み信号をディセーブルすることも出来ます(11hアドレス/タイマレジスタの項をご参照下さい)。

・カウントダウン読取値について

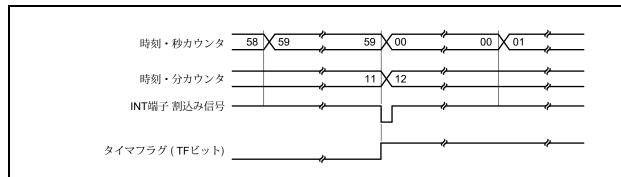
カウントダウンタイマ値を読込みした場合は、現在のカウントダウン値(残存値)が返されます。最初に設定した カウントダウン値は読み込めませんのでご注意下さい。カウントダウン値を途中で停止させる事は出来ませんの で、値を確認する場合は2回読込みを行い値の整合性の確認を行うことを推奨します。

・オフセット設定の影響

タイマ基準周波数の 64Hz (MODE=1の場合のみ)、1Hz、及び 1/60Hz はオフセット・レジスタの影響を受けます。 OFFSETレジスタの設定値が "00h" でない(オフセットが有効)の場合は設定によりオフセット間隔が変わってきます。もし100秒のタイマ間隔を1Hzのタイマ基準周波数で設定した場合は、100秒の間にオフセットパルスを複数回含み、回数が異なる場合もあるためオフセットの設定によってタイマ間隔に差分が生じます。 (オフセット補正の項をご参照下さい)

4.8. 毎分 または 30秒毎 割込み信号

毎分割込み信号 (MIビット)及び30秒毎割込み信号(HMIビット)は予めタイマ間隔が設定されている割込み信号パルスをINT端子から出力させます。


この割込み信号の基準タイマは時刻情報の秒カウンタに同期しています (時刻・カレンダーレジスタ/04h-秒 をご参照下さい)。

毎分割込み信号、及び30秒毎割込み信号を使用する際にはオフセット設定がノーマルモード (MODE=0)場合のみとしなければなりません(4.9 周波数オフセットの項をご参照下さい)。

ノーマルモードの場合、割り込み信号のパルス幅は『15.625ms』 になります。

毎分割り込み信号は、時刻情報の秒が "00" のタイミングで出力するため、最初の信号は設定の 1~59秒後の間に出力されます。同様に30秒毎割り込み信号の場合は設定の 1~29秒後の間に最初の割り込み信号が出力されます。いずれも2回目以降の信号からは等間隔で出力されます。この2つの割り込み信号は同時にイネーブルに設定することも出来ます。ただしその場合は毎分割り込み信号と30秒毎割り込み信号の "00"秒で発出する信号は区別出来ません。

毎分割り込み信号の出力例:

この例では、割込み信号が発生してもタイマフラグ (TF)はクリアせず、またINT端子はパルスモードに設定されています (TI_TP ビット = 1) 。

MIビット及びHMIビットの状態と INT端子出力の関係:

毎分割り込み (MIビット)	30秒毎割り込み (HMIビット)	INT端子出力
0	0	割込み信号出力無し
1	0	毎分に割り込み信号出力
0	1	30秒毎に割り込み信号出力
1	1	30秒時に削り込み信号出力

割込み信号の間隔はオフセットレジスタの設定の影響を受けます。

(02h - オフセットレジスタをご参照下さい)

オフセットレジスタ (02h) の値が 00h の時はオフセット補正値が 0に なるため一定間隔になります。

4.8.1.パルス・ジェネレータ1

INT端子の設定でパルスモードが設定されている時 (TI_TP=1)、毎分及び30秒毎割り込み信号のためのパルスジェネレータ1は内部基準クロックを基準に用います。

毎分割込み信号、及び30秒毎割込み信号を使用する際にはオフセット設定がノーマルモード (MODE=0)場合のみとしなければなりません。ノーマルモードの場合、割り込み信号のパルス幅は『15.625ms』 になります。INT端子からの割り込み信号の出力は タイマフラグ (TF)と同時にアクティブになります。

4.9. 周波数オフセット(時計クロックの補正)

RV-8063-C8 はオフセット・レジスタを組み込んでいます (02hオフセット・レジスタをご参照下さい)。このオフセット・レジスタにより内部の32.768kHzからの信号のオフセット補正を行うことが出来ます。

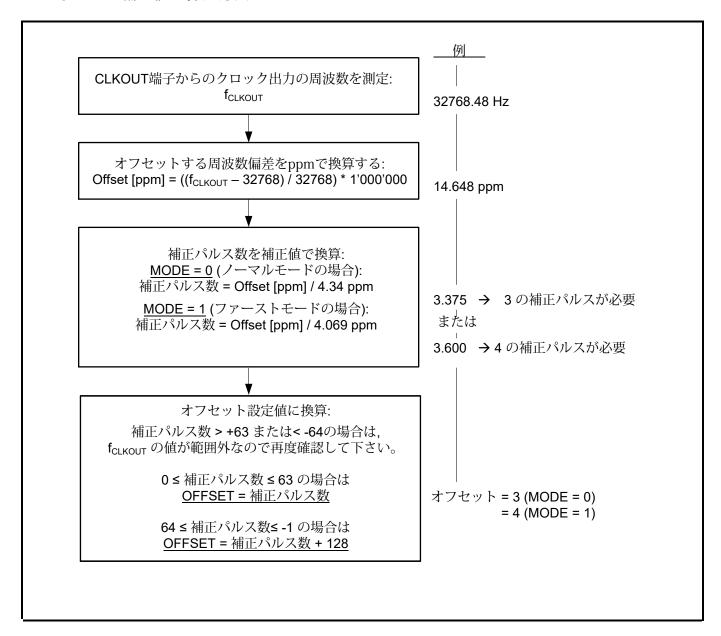
- 時計クロック精度の常温偏差の補正
- 時計クロック精度の経年変化の補正

02h - オフセット・レジスタ

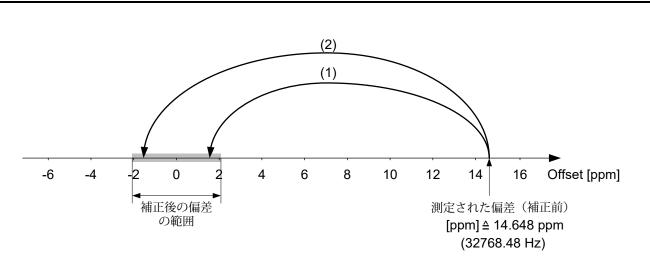
	レンハノ								
アドレス	機能	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
02h	オフセット	MODE	E OFFSET						
0211	リセット値	0	0	0	0	0	0	0	0
Bit	記号	値				 内容			
			オフセット・モード						
7	MODE	0	ノーマル・モード: オフセット補正が 2時間に一回行われます						
		1	ファース	ト・モード	:オフセッ	ト補正が 4	分に一回行	われます	
6:0	OFFSET	-64 ~ +63				場合は mは コード			
						周波数オフセット値			
OFFSET	符号なしの値		2 の補数値 (補正ステップ値)			(ppm) ⁽¹⁾			
書込み値			(1	用止ハナラ	/ 直/		マル・モード ODE = 0	/ / / .	ト・モード DE = 1
0111111	63			+63		+	273.420	+25	6.347
0111110	62		+62		+	269.080	+25	2.278	
;	:			:			:		:
0000001	1			+1			+4.340	+4	.069
0000000	0			0			0		0
1111111	127		-1			-4.340	-4	.069	
1111110	126			-2			-8.680	-8	.138
:	:			:			:		:
1000001	65	İ		-63		-:	273.420	-25	6.347
1000000	64			-64		-:	277.760	-26	0.416

⁽¹⁾ 最適な周波数オフセット値は CLKOUT端子からのクロック周波数を測定することにより算出することが出来ます。 (オフセット周波数の計算方法の項を参照下さい)

時計クロックの補正は基準クロックにパルスの加算または減算をすることにより行われます。 そのため以下の周波数に影響を与えます。


■CLKOUT 端子からのクロック出力:

- 1 Hz・・・影響あり
- 1.024 kHz~32.768 kHz・・・影響無し


■タイマ基準周波数:

- MODE = 0 (ノーマルモードの場合):
 - o 1/60Hz . 1Hz・・・影響あり
 - o 64Hz, 4.096kHz・・・影響無し
- MODE = 1 (ファーストモードの場合):
 - o 1/60Hz, 1Hz, 64Hz ・・・影響あり
 - o 4.096kHz・・・影響無し

4.9.1.オフセット補正値の算出方法

オフセット補正値の算出例:

オフセットの分解能が 4.34ppm なので、オフセット補正により ±2.17ppm の偏差まで調整することが出来ます。(ノーマルモードの場合。02h オフセット・レジスタの項もご参照下さい)

※ ±1ppm が 日差換算で, 0.0864秒に 相当します。

(1) MODE = 0の場合:補正後の偏差は (元の偏差:14.648ppm)-(補正値:3*4.34=13.02) = +1.628ppm

(2) MODE = 1の場合:補正後の偏差は (元の偏差:14.648ppm)-(補正値:3*4.069=16.276) = -1.628ppm

4.10.オフセット補正割り込み信号

オフセット補正割り込み信号を使用することで補正パルスの発生をモニタリングすることが出来ます。この割り込み信号を有効にするには CIEビット(O0h/2bit)を "1" にすると、補正パルスの発生毎にパルスジェネレータ3によってINT端子から割り込み信号が発生します。割込み信号の振幅幅はオフセットのモードによります(MODEビットでの設定)。オフセット補正パルスが複数回発生した場合も、割り込み信号は補正パルスの発生毎に出力されます。

4.10.1. MODE = 0 (ノーマル・モード時) のオフセット補正割り込み信号

オフセット補正は2時間に1回トリガされます。

補正パルスは 設定した補正値分の補正を終えるまで 1分に1回発生します。

MODE = 0(ノーマルモード時)の補正パルスと割り込み信号:

補正パルス (ステップ値)	アップデートされる 時間	アップデートされる 分	1秒間にINT端子から 出力される割り込み信号(1)	
+1 または -1	2時間後	00	1	
+2 または -2	2時間後	00,01	1	
+3 または -3	2時間後	00, 01, 02	1	
:	÷	:	:	
+59 または -59	2時間後	00 ~ 58	1	
+60 または -60	2時間後	00 ~ 59	1	
.04 + + 1 + 04	2時間後	00 ~ 59	1	
+61 または -61	2時間後と3時間後	00	1	
.00 + 2 1 00	2時間後	00 ~ 59	1	
+62 または -62	2時間後と3時間後	00,01	1	
100 ++14 00	2時間後	00 ~ 59	1	
+63 または -63	2時間後と3時間後	00, 01, 02	1	
-64	2時間後	00 ~ 59	1	
	2時間後と3時間後	00, 01, 02, 03	1	
⁽¹⁾ MODE = 0 の場合、INT端子から出力されるオフセット補正割り込み信号の振幅幅は 15.625ms です。				

MODE = 0の場合、CLKOUT出力及びタイマ基準周波数のうち64Hz以下の周波数は補正パルスの影響を受けます。

MODE = 0 の場合で補正パルスの影響を受ける周波数:

周波数	補正パルスの影響		
CLKOUT出力			
32.768 kHz	影響無し		
16.384 kHz	影響無し		
8.192 kHz	影響無し		
4.096 kHz	影響無し		
2.048 kHz	影響無し		
1.024 kHz	影響無し		
1 Hz	影響がある		
タイマ基準周波数			
4.096 kHz	影響無し		
64 Hz	影響無し		
1 Hz	タイマ間隔に影響がある		
1/60 Hz	タイマ間隔に影響がある		

4.10.2. MODE = 1 (ファースト・モード時 のオフセット補正割り込み信号

MODE=1 の場合は補正は4分ごとにトリガされ、オフセット補正割り込み信号は最大で60パルスまで毎秒出力されます。補正値が60を超える場合は59秒目に補正値が追加されます。

MODE=1 ではより頻繁に補正が行われるため、消費電流が若干増加します。

MODE = 1(ファーストモード時)の補正パルスと割り込み信号:

補正パルス (ステップ値)	アップデートされる 分	アップデートされる 秒	1分間にINT端子から 出力される割り込み信号 (1)
+1 または -1	4分後	00	1
+2 または -2	4分後	00,01	1
+3 または -3	4分後	00, 01, 02	1
:	:	:	;
+59 または -59	4分後	00 ~ 58	1
+60 または -60	4分後	00 ~ 59	1
104 + + 1+ 04	4分後	00 ~ 58	1
+61 または -61	4分後	59	2
100 ++ 11 00	4分後	00 ~ 58	1
+62 または -62	4分後	59	3
00 + 11 00	4分後	00 ~ 58	1
+63 または -63	4分後	59	4
0.4	4分後	00 to 58	1
-64	4分後	59	5

⁽¹⁾ MODE = 1 の場合、INT端子から出力されるオフセット補正割り込み信号の振幅幅は 977 μ sです。 複数回の場合は1.953msのインターバルで出力されます。

MODE = 1の場合, CLKOUT出力 及び タイマ基準周波数のうち 1.024kHz 以下の周波数は補正パルスの影響を受けます。

MODE = 1 の場合で補正パルスの影響を受ける周波数:

周波数	補正パルスの影響		
CLKOUT出力			
32.768 kHz	影響無し		
16.384 kHz	影響無し		
8.192 kHz	影響無し		
4.096 kHz	影響無し		
2.048 kHz	影響無し		
1.024 kHz	影響無し		
1 Hz	影響がある		
タイマ基準周波数			
4.096 kHz	影響無し		
64 Hz	タイマ間隔に影響がある		
1 Hz	タイマ間隔に影響がある		
1/60 Hz	タイマ間隔に影響がある		

4.11. CLKOUT 端子からのクロック出力周波数の選択

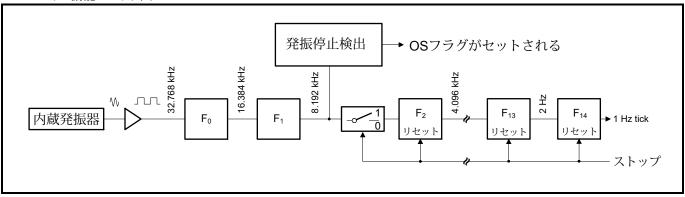
CLKOUT端子からプログラマブルの矩形波を出力できます。 FDフィールド (01h / Bit2:0) にて設定します。 周波数は32.768kHz (デフォルト) から1Hzまでの範囲で、システムクロック、マイコンのクロック、チャージポンプへの入力、内部発振器のオフセット用途などに使用出来ます。

CLKOUT端子はプッシュ–プルの出力で、電源投入時にはイネーブルになります。FDフィールド(01h/Bit2:0)を"111" と設定することでソフトウェアから出力をディセーブルすることが出来ます。 ディセーブル時の CLKOUT端子の 電位は Low になります。

Dutyサイクルの設定は出来ません。

ただし32.768kHz以外の周波数ではおよそ50:50になります(分周のため)。

設定した周波数によってはストップビット機能の影響を受けます。STOPビット (00h/Bit5)を "1"にセットした場合、CLKOUT端子は4.096kHz以下の周波数ではクロック出力は停止して Lowで一定になります。 (STOPビット機能の項もご参照下さい).


FDフィールド	CLKOUT出力周波数	Duty サイクル Typ.	STOPビット=1 の影響			
000	32.768 kHz – 初期値	$50 \pm 10 \%$	影響無し			
001	16.384 kHz	50 %	影響無し			
010	8.192 kHz	50 %	影響無し			
011	4.096 kHz	50 %	CLKOUT = LOW			
100	2.048 kHz	50 %	CLKOUT = LOW			
101	1.024 kHz	50 %	CLKOUT = LOW			
110	_{1 Hz} (1)	50 %	CLKOUT = LOW			
111	CLKOUT = LOW	1	_			
⁽¹⁾ 1 Hz クロック出力	(1) 1 Hz クロック出力はオフセット補正パルスの影響も受けます (4.9. 周波数オフセット (時計クロックの補正) をご参照下さい.					

4.12. ストップ・ビット機能(STOPビット 00h/Bit5)

ストップビット機能によりRTC内部のタイミング回路を正確にスタートさせることが出来ます。ストップビット機能は以下のクロック・ブロック図の $F2\sim F14$ のプリスケーラに作用します。 4.096 kHz以下のクロックは停止し、内部の時計基準クロックの1Hzクロックも停止します。 $32.768 kHz \sim 8.192 kHz$ の間のクロックには影響しません。

(4.11. CLKOUT 端子からのクロック出力周波数の選択 の項をご参照下さい).

STOPビット機能ブロック図:

時計カウンタはストップビットにより停止します。ストップビットがリリースされると再度動作を開始します。 (下図を参照下さい)

STOPビット	各プリスケーラの状態 ¹⁾ F ₀ F ₁ -F ₂ to F ₁₄	1Hz 時計クロック	時刻の状態 hh:mm:ss	備考
* 内蔵発振器が〕	E常に動作している状態で			
0	01-0 0001 1101 0100		12:45:12	プリスケーラは通常に動作
ユーザによりS []	TOPビットがセットされた状	態。F₀F₁ はリセット	されません	
1	XX-0 0000 0000 0000		12:45:12	プリスケーラはリセットされ時計クロックは停止
* ユーザにより新	fたに時刻が設定された。			
1	XX-0 0000 0000 0000		08:00:00	プリスケーラはリセットされたまま時計クロックも停止したまま
ユーザによりS []	TOPビットがリリースされた	0		
0	XX-0 0000 0000 0000		08:00:00	プリスケーラは動作を再開
	XX-1 0000 0000 0000		08:00:00	-
	XX-0 1000 0000 0000	0.507813	08:00:00	-
	XX-1 1000 0000 0000	to 0.507935 s	08:00:00	-
	:	0.5079553	:	:
	11-1 1111 1111 1110	↓ _	08:00:00	-
	00-0 0000 0000 0001	*	08:00:01	プリスケーラのF14 が 0→1となり 1秒時計が進む
	10-0 0000 0000 0001		08:00:01	-
	:	↓	:	:
	11-1 1111 1111 1111	1.000000 s	08:00:01	-
	00-0 0000 0000 0000	1.000000 \$	08:00:01	-
	10-0 0000 0000 0000		08:00:01	-
	:	↓	:	:
	11-1 1111 1111 1110	↓ _	08:00:01	-
	00-0 0000 0000 0001		08:00:02	再度プリスケーラのF14 が 0→1となり 1秒時計が進む
	10-0 0000 0000 0001	'	08:00:02	-

¹⁾ F₀ は32.768kHz発振器にて動作

F₀とF₁のプリスケーラは、STOPビットでは停止しません。

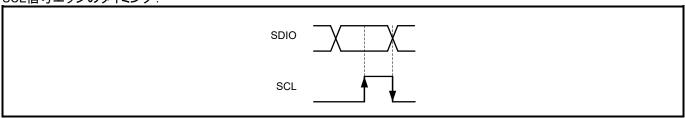
また、SPIインターフェースクロック(SCL)は内部の32.768kHz発振器とは非同期のため、

リスタートのタイミングは最大で 8.192kHzの1サイクル分の誤差が生じます。

(次ページの図をご参照下さい)

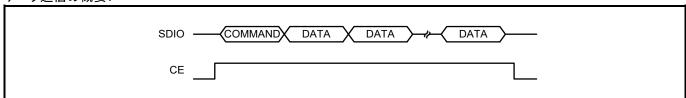
ストップ・ビットのリリースのタイミング

ストップビットをリリースした後の最初の時刻情報のインクリメント(1秒進む)は $0.507813\sim0.507935$ 秒後になります。誤差が生じる原因は、内部のプリスケーラの F_0 と F_1 はストップビットによりリセットされず32.768kHzのクロックタイミングが不明になるためです。


5. SPI バス・インターフェース

データのやり取りは3線のSPIバスにて通信します(下表をご参照下さい)。チップイネーブル信号(CE)にて送信データが識別されます。データは1バイト毎で、MSBビットを先頭にして送信されます。 (下図をご参照下さい)

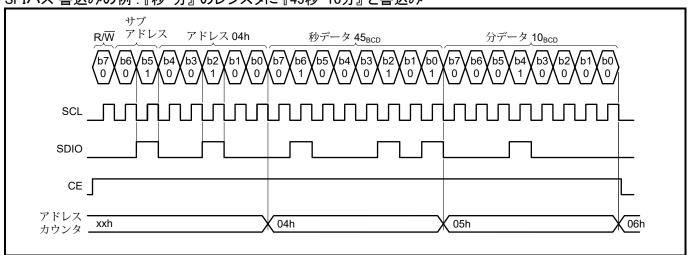
SPIバス・シリアルインターフェース:


01 11 17 7	1 12 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•					
記号	機能	内容					
CE	チップイネーブル入力	Lowにてインターフェースはリセットされます。常にHighにしてはいけません。					
SCL	シリアルクロック入力	E端子が Lowの時はフローティング状態になります。					
シリアルデータ入力・出力							
SDIO	入力 CE端子が Lowの時はフローティング状態になります; データはSCLの立上りエッジでサンプリングされます。						
	出力	プッシュプル出力; V _{SS} からV _{DD} 間をドライブ;出力データはSCLの立下りエッジで切り替わります; ドライブしていない時はハイインピーダンスになります					

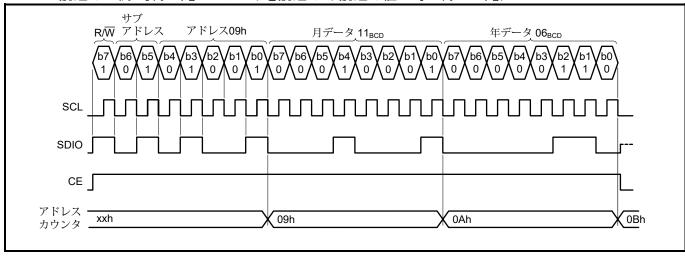
SCL信号エッジのタイミング:

データ転送はCE端子がアクティブ (High) になることにより開始されます。最初に送られるバイトはコマンドバイトです。続いて書込みデータ、または読込みデータが送られます。データは SCLクロックの立上りエッジでサンプリングされます。従って待機状態ではSCLは Low になります。

データ送信の概要:


コマンドバイトにてデータの書込み・読み込みをする最初のアドレスを指定します。RV-8063-C8 のアドレスカウンタは、続くデータに対して自動的にアドレスをインクリメントします。最後のレジスタアドレスの次は自動的に 00hへ戻ります(機能概要の項をご参照下さい)。R/Wビットによって続くデータが読込み,または書込みデータか指定されます。

コマンドバイトの定義:


Bit	記号	値	值 内容				
			データの読み込み/書込みを指定				
7	7 R/W	0	データを書込み				
			データを読み込み				
6:5	SA	01	サブアドレス; "01" 以外の場合はデータを受け付けません。				
4:0	RA	0h to 11h	レジスタアドレス:この範囲外のアドレスは受け付けません。				

5.1. シリアルバイスの読込み/書き込みの例

SPIバス 書込みの例: 『秒・分』 のレジスタに 『45秒・10分』 と書込み

SPIバス 読込みの例: 『月·年』のレジスタを読込み(読込み値 = 『11月・06年』)

6. 電気的特性

6.1. 絶対最大定格

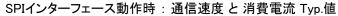
下表に絶対最大定格を示します。

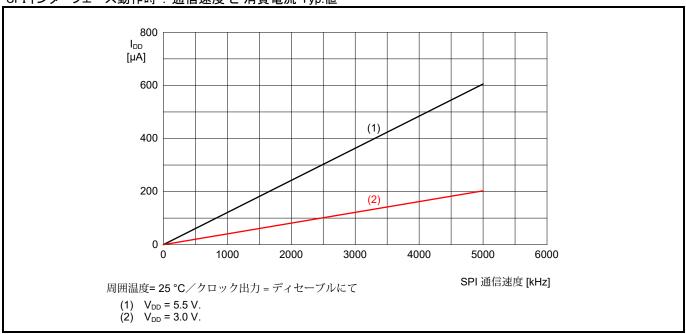
絶対最大最大定格(IEC 60134に基づく):

記号	項目	条件		MIN	MAX	単位
V_{DD}	供給電圧			-0.5	6.5	V
I_{DD}	入力電流			-50	50	mA
Vı	入力電圧			-0.5	6.5	V
Vo	出力電圧			-0.5	6.5	V
I _I	入力電流	全ての入力端子		-10	10	mA
Io	出力電流	全ての出力単位		-10	10	mA
Ртот	最大消費電力				300	mW
M	静電耐圧	НВМ	(1)		±5000	V
V_{ESD}		CDM	(2)		±2000	V
I _{LU}	ラッチアップ電流		(3)		200	mA
T _{OPR}	動作温度範囲			-40	85	°C
T _{STO}	保存温度範囲	部品単体にて		-55	125	°C
T _{PEAK}	リフロー最大温度	JEDEC J-STD-020C			265	°C

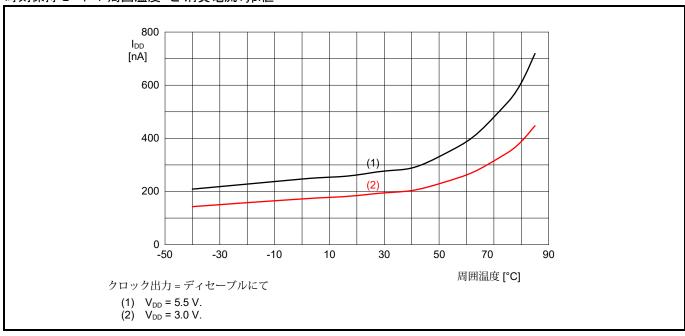
⁽¹⁾ HBM: 人体モデル, JESD22-A114。(2) CDM: チャージデバイスモデル, JESD22-C101。(3) ラッチアップテスト, JESD78, 最大動作温度にて

6.2. DC特性

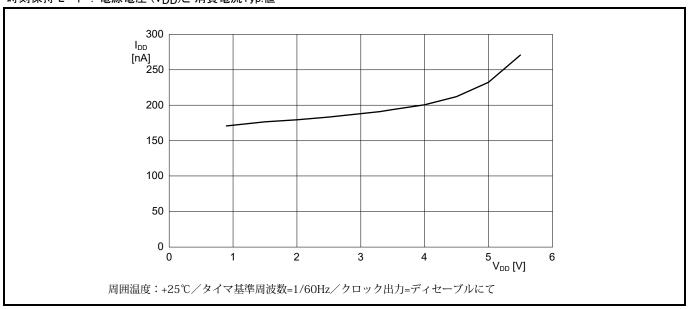

条件: 温度範囲= -40°C to +85°C特に記載の無い場合), V_{DD} = 0.9~5.5V, TYP 値は+25℃/V_{DD}=+3.0Vでの値

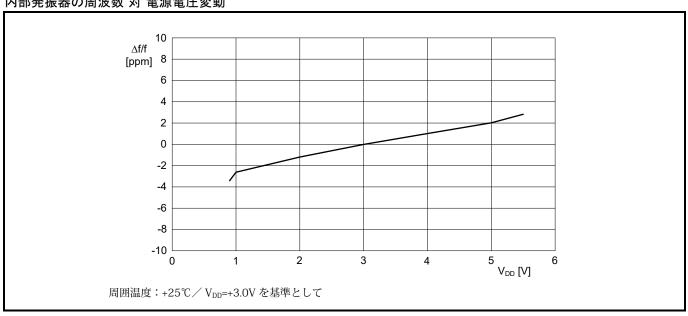

DC特性表:

記号	項目	条件	MIN	TYP	MAX	単位
入力電圧·入	<u>.</u> .力電流				•	
V_{DD}	電源電圧	Time-keeping mode; interface inactive; f _{SCL} = 0 Hz (1)	0.9		5.5	V
		Interface active; f _{SCL} = 1 MHz ⁽²⁾	1.8		5.5	
	時計保持モード電流	$V_{DD} = 3.0 \text{ V}, T_A = 25^{\circ}\text{C}$		190		
I _{DD}	クロック出力:ディセーブル	$V_{DD} = 3.0 \text{ V}, T_A = 50^{\circ}\text{C}$ (4)		230		nA
	インターフェース非動作 ⁽³⁾	$V_{DD} = 3.0 \text{ V}, T_A = 85^{\circ}\text{C}$		450	600	
I _{DD}	時計保持モード電流 クロック出力:ディセーブル インターフェース動作時 (1MHz)	V _{DD} = 3.0 V		40	180	μΑ
入力規格						
Vı	入力電圧		Vss -0.5		V _{DD} +0.5	V
V _{IL}	入力 Low レベル		Vss -0.5		0.3 V _{DD}	V
V _{IH}	入力 High レベル		0.7 V _{DD}		V _{DD} +0.5	V
	入力リーク雷流	$V_I = V_{SS}$ or V_{DD}		0		μA
I _{LEAK}	人力リーク电弧	V _I = V _{SS} or V _{DD} , post ESD event	-0.15		+0.15	μΑ
Cı	入力容量	On pins SDIO, SCL, CE and CLKOE (5)			7	pF
出力規格						
V _{OH}	出力 High レベル	On pins SDIO, CLKOUT	0.8 V _{DD}		V_{DD}	V
V_{OL}	出力 Low レベル	On pins SDIO, INT, CLKOUT	V _{SS}		0.2 V _{DD}	V
			出力ソース電	流		
I _{OH}	Highレベル出力電流	On pin SDIO, $V_{OH} = 2.6 \text{ V}, V_{DD} = 3.0 \text{ V}$	2	5		mA
		On pin CLKOUT, $V_{OH} = 2.6 \text{ V}, V_{DD} = 3.0 \text{ V}$	1	3		mA
			出力シンク電	流		
I _{OL}	Lowレベル出力電流	On pins SDIO, \overline{INT} V _{OL} = 0.4 V, V _{DD} = 3.0 V	2	6		mA
		On pin CLKOUT $V_{OL} = 0.4 \text{ V}, V_{DD} = 3.0 \text{ V}$	1	3		mA


⁽¹⁾ 確実に内部発振器を動作させるために V_{DD} は1.2V以上必要です。0.9Vで起動した場合は, 特に高温環境下では起動が早くなる場合があるかもしれませんが, 通常は0.9Vでは起動せず単なるバッテリの消耗につながります。 V_{DD} min の0.9Vの値は必要なバックアップバッテリの容量の算出のために用います。 V_{DD} >1.2V が内部発振器の確実で早く起動させるために必要です。

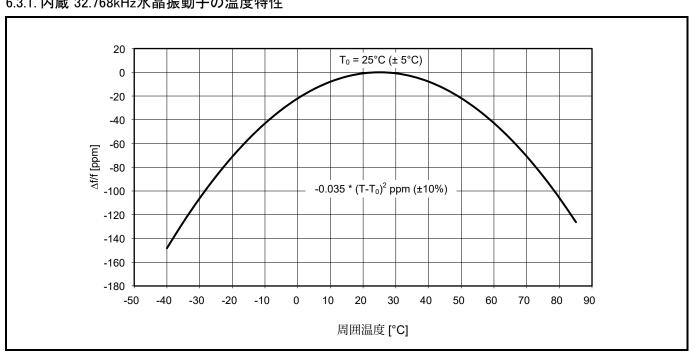
- (2) 1MHz のSPI通信速度は+1.8Vddで製造時に検査されます。ロット抜取り検査で1.8V-5% (1.71V) の条件で試験されます。
- (3) タイマ基準周波数= 1/60 Hz, 及び CE, SDIO, SCL端子の電位が VDDまたはVSS にて
- (4) 量産時件検査は抜取り検査にて。
- (5) 設計値。




時刻保持モード: 周囲温度 と消費電流Typ.値

時刻保持モード:電源電圧(VDD)と消費電流Typ.値

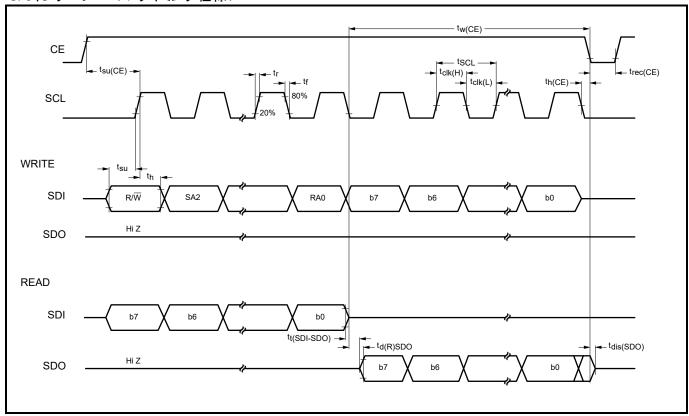
内部発振器の周波数 対 電源電圧変動


6.3. 内部発振器の特性

条件: 温度範囲= -40°C to +85°C (特に記載の無い場合), V_{DD} = 0.9~5.5V, TYP値は+25 $^{\circ}$ C $/V_{DD}$ =+3.0Vでの値.

発振器の特性:

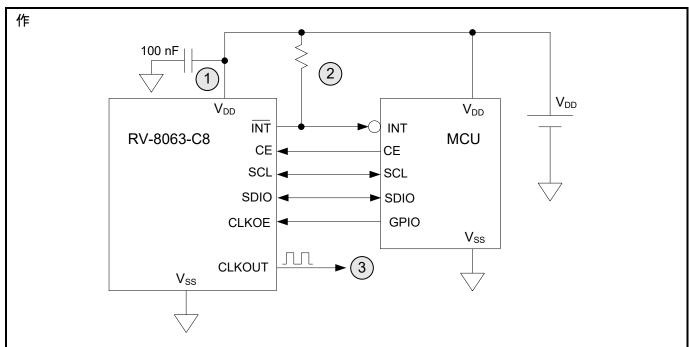
記号	項目	条件	MIN	TYP	MAX	単位
水晶発振器の特	性:	•				
f	周波数			32.768		kHz
t _{START}	起動時間			0.2	2	s
δ_{CLKOUT}	Dutyサイクル	$F_{CLKOUT} = 32.768 \text{ kHz}$ $T_A = 25^{\circ}\text{C}$	40		60	%
水晶振動子の特	性:					
Δf/f	常温周波数偏差	F = 32.768 kHz $T_A = 25^{\circ}\text{C}, V_{DD} = 3.0 \text{ V}$		±10	±20	ppm
Δf/V	周波数:対電源電圧変動			±1		ppm/V
Δf/f _{TOPR}	周波数:温度特性	$T_{OPR} = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $V_{DD} = 3.0 \text{ V}$	-0.035 ^{pp}	om/ _{°C} ² (T _{OPR} -T ₀) ² ±10%	ppm
T ₀	頂点温度		20		30	°C
Δf/f	初年度経年変化	$T_A = 25^{\circ}C, V_{DD} = 3.0 \text{ V}$			±3	ppm
周波数オフセッ	ト補正機能:					
Δt/t	オフセット値 (MODE = 0) 最小値〜最大値	T _A = -40°C to +85°C	±4.34		+273.4/ -277.8	ppm
Δt/t	オフセット値 (MODE = 1) 最小値〜最大値	T _A = -40°C to +85°C	±4.069		+256.3/ -260.4	ppm
Δt/t	調整可能な時計精度	周囲温度及び動作電圧 が同一の条件にて	-2.17		+2.17	ppm


6.3.1. 内蔵 32.768kHz水晶振動子の温度特性

6.4. SPIバス・AC仕様

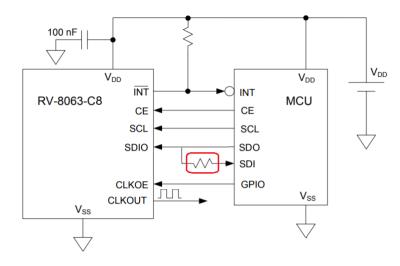
 V_{DD} = 1.8~5.5V; VSS=0.0V; 温度:-40~+85℃, f_{OSC} =32.768kHz (記載のない限り)。全てのタイミング仕様値は, 動作電圧, 動作温度, 及び入出力電流が仕様値内の場合に有効です。

SPIインターフェース・タイミング仕様:

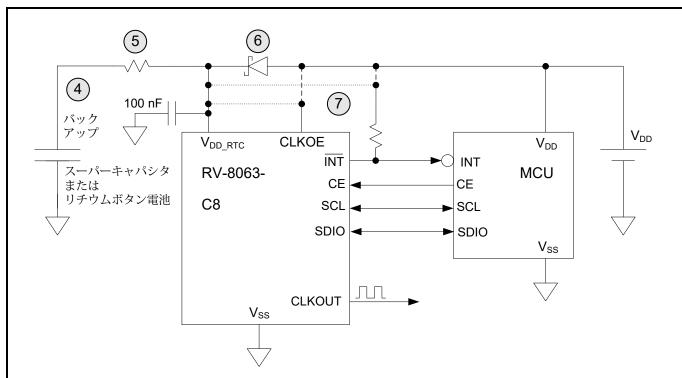


SPIバス・AC仕様

記号	項目	条件		= 1.8 V 3.0 V	V _{DD} > to 5	単位	
,,,		7331	MIN	MAX	MIN	MAX	
f _{SCL}	SCL クロック周波数			5		7	MHz
t _{SCL}	SCL パルス幅		200		140		ns
t _{clk(H)}	SCL Highレベル時間		80		80		ns
t _{clk(L)}	SCL Highレベル時間		110		60		ns
t _r	立上り時間	SCLクロック信号にて		100		100	ns
t_f	立下り時間	SCLクロック信号にて		100		100	ns
t _{su(CE)}	CE セットアップ時間		15		15		ns
t _{h(CE)}	CE ホールド時間		10		10		ns
t _{rec(CE)}	CE リカバリ時間		50		50		ns
$t_{\text{w(CE)}}$	CE パルス幅	有効なサブアドレス情報を受信後		0.99		0.99	s
t _{su}	セットアップ時間	SDIデータの読出し遅延時間	5		5		ns
t _h	ホールド時間	SDIOデータのホールド時間	50		20		ns
t _{d(R)SDO}	SDO 遅延時間	バス負荷=50pF		110		60	ns
$t_{dis(SDO)}$	SDO ディセーブル時間	回路側の負荷条件にて (RC time constant)		50		50	ns
t _{t(SDI-SDO)}	SDI→SDO 変移時間	コンフリクト回避 (SDIO 端子)	0		0		ns


7. 回路設計情報

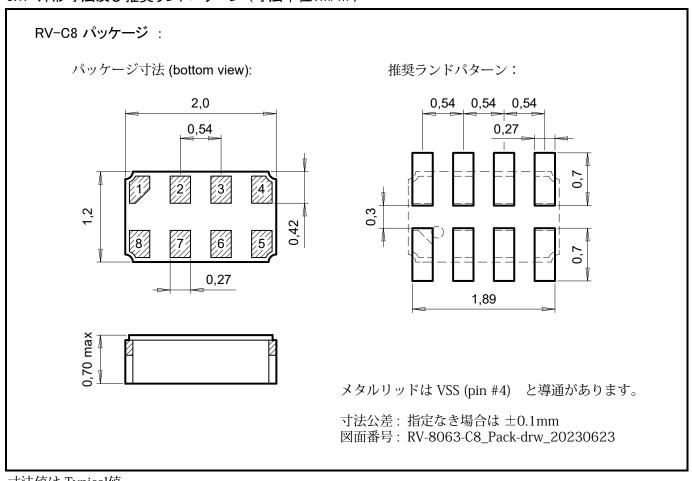
7.1. RV-8063-C8 の標準的な動


- ① 0.1 μF のバイパスコンデンサをデバイスになるべく近いところに配置して下さい。
- ② INT端子はオープンドレイン動作で、V_{DD} にプルアップする必要があります。
- ③ CLKOUT端子からは 32.768kHz~1Hz の間のクロックを出力させることが出来ます。 クロック出力を使用しない場合は FDフィールド (01h/Bit2:0) を "111b" とするか, またはCLKOE端子をLowにして消費電流を抑えて下さい。 クロック出力がディセーブルの間はCLKOUT端子はLowレベルで一定になります。 さらにタイマ機能をオフにし (TE=0),タイマ基準周波数を1/60Hz (TD=11b)とするとより消費電流を抑えられます。

(補足) 4線インターフェースのマイコンでうまく通信出来ない場合には下図をご参考にされて下さい。 赤枠の抵抗値の目安は『1k~10kΩ』が目安ですが、実基板で最適な値を確認してください。

7.2. RV-8063-C8 にバックアップ電源を用いる場合

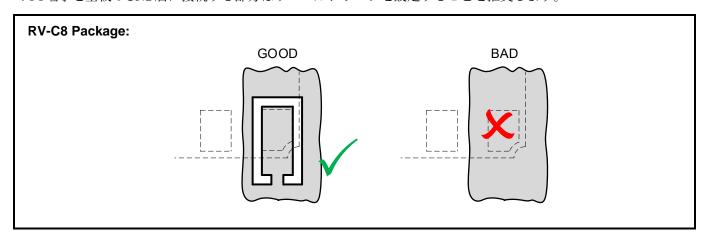
外部にダイオードを用いた回路で電源バックアップ回路を形成出来ます。 RV-8063-C8 を最も消費電流の少ない設定にすることで (前頁の 7.1項 の ③ を参照下さい), スーパーキャパシタの場合は数週間、一次電池 (リチウムボタン電池) の場合は年単位のバックアップが可能です。


- ④ 1ファラッドなどのスーパーキャパシタ, または一次または二次の電池 (renata社LMRシリーズなど)。スーパーキャパシタ及び二次電池の定充電電圧はメーカーの仕様に従って下さい。
- ⑤ スーパーキャパシタを使用する場合は、ショットキー・ダイオード順方向電流規格との兼ね合いにもより、必要に応じて、突入電流抑制のための制限抵抗を使用して下さい。また一次電池をご使用の場合は、この抵抗は回路短絡時の電流制限用途で必要になります。一次電池をご使用の場合は、この抵抗とVddの回路分岐の間にショットキー・ダイオードを挿入してください。
- ⑥ ショットキー・ダイオード。RV-8063-C8 の V_{DD} 端子 と入力端子との間での電圧差が規格内に収まる様にVFが十分に小さいもの (0.3V以下)を使用する必要があります。 (V_{L} MAX = V_{DD} RTC +0.5 V)。

ショットキー・ダイオードには漏れ電流があります。バッテリ・バックアップ時間を最適にするためには漏れ電流の少ないものを推奨します(BAS70-05 など)。

⑦ CLKOUT端子からのクロック出力、及びINT端子からの割り込み信号の両方またはどちらか一方をバックアップモード時にも必要とする場合は、CLKOE端子 及び INT端子のプルアップ抵抗の両方またはいずれかを上記図の "V_{DD RTC}" 部分に接続します。

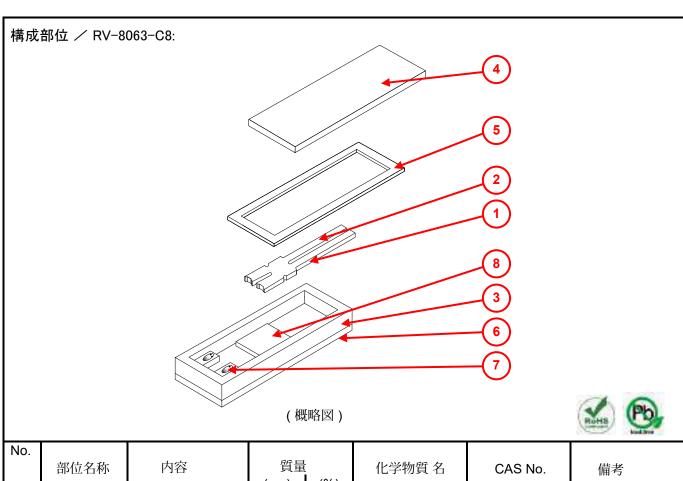
8. パッケージ


8.1. 外形寸法及び推奨ランドパターン(寸法単位:m/m)


寸法値は Typical値。

8.1.1. 推奨のサーマルレリーフ設定

VSS端子を基板のGND層に接続する部分はサーマルレリーフを設定することを推奨します。


8.2. マーキング 及び Pin 1 インデックスマーク

9. 構成物質と環境資料情報

9.1. 構成部位 及び 構成物質リスト

IPC-1752 に基づく含有物質リスト :

No.	部位名称	内容	質量 (mg) (%)		化学物質 名	CAS No. 備考
1	振動子	クオーツ	0.099	100%	SiO ₂	14808-60-7
2	振動子電極	Cr, Au	0.0035	3% 97%	Cr Au	Cr: 7440-47-3 Au: 7440-57-5
3	ハウジング	セラミック	2.92	100%	Al2O3	1344-28-1
4	メタルリッド	コバール	1.10	91%	Fe53Ni29Co18	Fe: 7439-89-6 Ni: 7440-02-0 メタルリッド Co: 7440-48-4
		Ni めっき Au めっき		8.9% 0.1%	Ni Au	Ni: 7440-02-0 Niメッキ Au: 744057-5 Auメッキ
5	シーリング	はんだフォーム	0.15	80% 20%	Au80 / Sn20	Au: 7440-57-5 Sn: 7440-31-5
6	電極	内部及び外部電極	0.48	80% 15% 5%	Mo Ni Au 0.5 ミクロン	Mo: 743998-7 モリブデン(下地 Ni: 7440-02-0 Niめっき(中間) Au: 7440-57-5 Auめっき(表面)
7	振動子固定材	Auバンプ	0.11	100%	Au	Au: 7440-57-5
8	CMOS IC	シリコン Auバンプ	0.29	90% 10%	Si Au	Si: 7440-21-3 Au: 7440-57-5
		部品質量	5.054			

9.2.環境負荷物質/含有調査結果

IPC-1752 standard に基づく環境負荷物質含有調査情報:

No.	部位名称	内容			R	SHc			ハロゲン				フタル酸エステル			
			Pb	РЭ	ВH	Cr(VI)	BBB	PBDE	4	IJ	Br	1	488	DBP	dH∃G	DIBP
1	振動子	クオーツ	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
2	振動子電極	Cr, Au	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
3	ハウジング	セラミック	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
4	メタルリッド	コバールリッド 及び めっき	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
5	シーリング	はんだフォーム	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
6	電極	内部及び外部電極	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
7	振動子固定材	Auバンプ	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
8	CMOS IC	シリコン 及び Auバンプ	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	MDL [ppm]	検出限界		2		8	į	5		5	0			5	0	

nd (not detected = 未検出) = "検出限界" (MDL) 以下

試験方法:

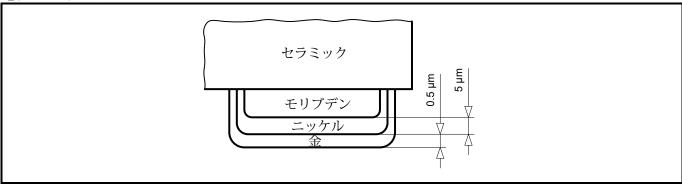
RoHS 参照テスト方法:

IEC 62321-5:2013 Pb, Cd MDL: 2 ppm MDL: 2 ppm IEC 62321-4:2013 + AMD1:2017 IEC Hg MDL: 8 ppm 62321-7-2:2017 Cr(VI) MDL: 5 ppm IEC 62321-6:2015 PBB / PBDE MDL: 50 ppm ハロゲン 試験方法は BS EN 14582:2016 に準拠 MDL: 50 ppm フタル酸エステル 試験方法は IEC 62321-8:2017 に準拠

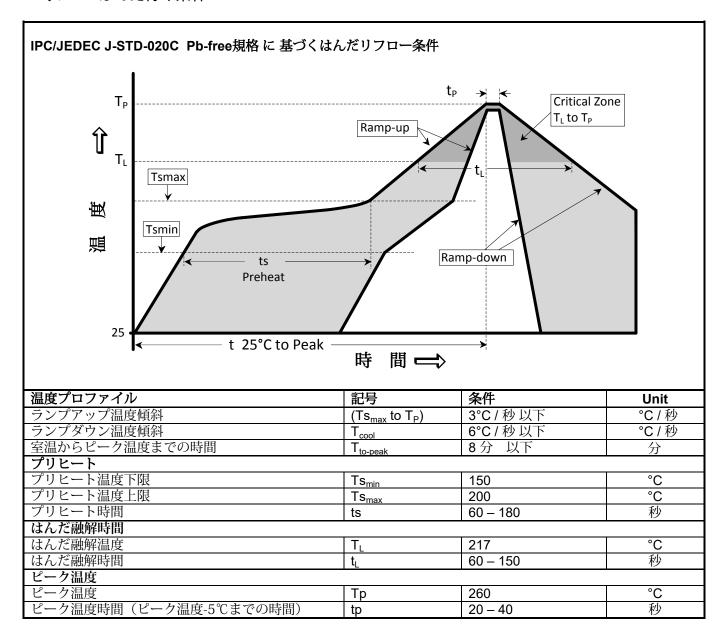
9.3. 製品リサイクル情報

IPC-1752 に基づく生産リサイクル関連情報。

各構成部位の質量 は 製品質量: 5.05 mg をもとに計算された値です。


物質名	No.	部位名称	物質質量		化学物質名	CAS No.	備考
			(mg)	(%)			
Quartz Crystal	1	振動子	0.099	1.96	SiO ₂	14808-60-7	
Chromium	2	電極	0.0001	0.002	Cr	Cr: 744047-3	
Ceramic	3	ハウジング	2.92	57.78	Al2O3	1344-28-1	
Gold	2 4 5 6 7 8	振動子電極 メタルリッド シーリング 内部及び外部電極 振動子固定材 CMOS IC	0.19	3.73	Au	Au: 744057-5	
Tin	5	シーリング	0.03	0.59	Sn	Sn: 744031-5	
Nickel	4 6	メタルリッド 内部及び外部電極	0.17	3.36	Ni	Ni: 744002-0	
Molybdenum	6	内部及び外部電極	0.38	7.60	Мо	Mo: 7439 9 8-7	
Kovar	4	メタルリッド	1.00	19.81	Fe53Ni29Co18	Fe: 7439-89-6 Ni: 7440-02-0 Co: 7440-48-4	
Silicon	8	CMOS IC	0.26	5.16	Si	Si: 744021-3	
		合計製品質量	5.05	100			

9.4. 環境耐性 及び 最大定格 及び 電極めっき詳細


パッケージ	内容
SON-8	小型リードレス (SON), セラミックパッケージ・メタルリッド

項目	規格•指令	条件	値
製品質量			5.05 mg
保存温度範囲		部品単体での保存にて	-55 to +125°C
保管湿度レベル (MSL)	IPC/JEDEC J-STD-020D		MSL1
FIT 数/ MTBF			お問合せ下さい

電極メッキ仕上げ:

10.リフローはんだ付け条件

- ・リフロー実装は『温風リフロー』(または蒸気リフロー)が推奨されます。
- ・『赤外リフロー』はホットスポット発生によりデバイス故障の原因になる可能性があるため推奨されません。

11. 水晶振動子を搭載した製品のお取り扱い上の注意点

内蔵されている水晶振動子は水晶結晶の二酸化珪素を母材とした薄い素板です。パッケージ内のキャビティは水晶 振動子が空気抵抗、及び湿度、異物などの影響を受けないように真空状態に密閉されています。

振動及び衝撃について:

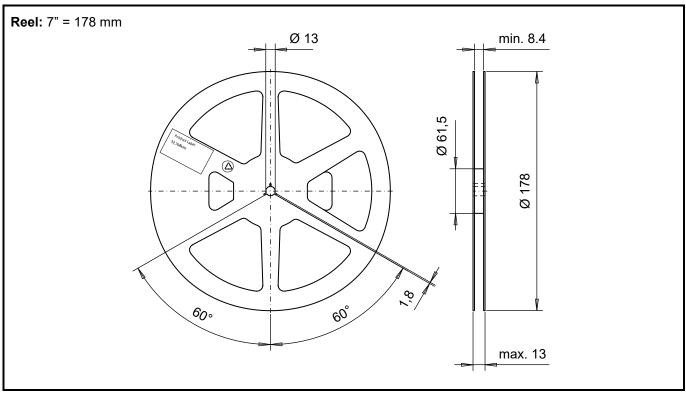
水晶デバイスに過度の衝撃や振動を与えないようご注意ください。マイクロクリスタルでは <5000g/0.3ms 以内>でのご使用を推奨します。

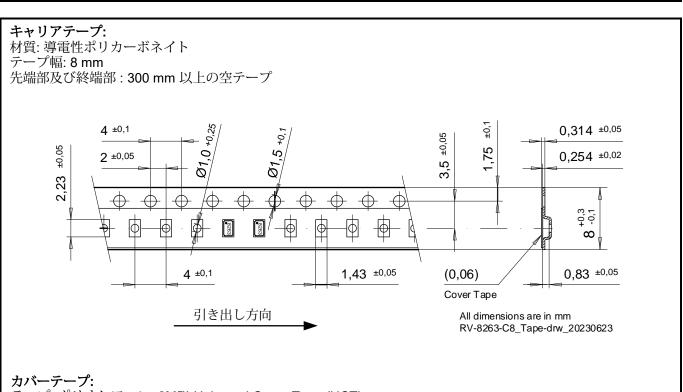
特に実装時における以下の特別な場合にモジュールの故障を引き起こす衝撃や振動が発生する可能性がありますのでご注意下さい。

多面付け基板の場合、部品実装後に行う基板分割の工程で、ルーターによる振動が基本波または高調波で 32.768KHzに近くなることがあり、その振動によりモジュール内部の水晶素板を破損する可能性があります。 基板分割加工の際には、振動が基本波または高調波で 32.768KHz近くにならない様にルーターの速度を調整するようご注意下さい。

超音波洗浄 につきましては、このモジュールに対しては行わないようにして下さい。 超音波振動により内部の水晶素板が破損する可能性があります。

過度の加熱、リワーク、高温放置:


過度にパッケージを加熱しないようご注意ください。モジュールのパッケージは 金すず合金 (80%:20%) でシーリングされています。この金すず合金の融点は『280℃』のため、パッケージの温度が『280℃』以上になるとメタルシール部分が溶解して内部の真空気密がリークしてしまうため製品の故障につながります。特にホットエアガンの設定温度が『300℃』以上の場合は故障しやすくなります。


リワークの場合は以下の方法を推奨します:

- ホットエアガンを使用する場合は設定温度を『270℃』として下さい。
- はんだ小手を2本使用し、小手先の温度を『270℃』に設定し、片側の端子をメッキ線などでブリッジさせて、全てのはんだが溶けたところをピンセット等で取り上げて下さい。

ただしリワーク時に故障は発生しやすく、かつ外観での故障は判断できないため、なるべく一度基板から取り外したものは製品に使用されないことをお勧めします。

12. テープ・リール 図面

テープ: ポリオレフィン, 3M™ Universal Cover Tape (UCT) 接着剤タイプ: 感圧接タイプ, Synthetic Polymer Thickness: 0.06 mm

剥がれ方:

中央部が剥がれて,両側面はキャリアテープに残ります

13コンプライアンス情報

RV-8063-C8の標準品は "EU RoHS Directive" 及び "EU REACh Directives" に適合してい ます。環境資料につきましてはマイクロクリスタルのウェブサイトでも掲載しています。 CoC_Environment_RV-Series.pdf

14. 改訂履歴

日付	版数	内容
June 2023	1.0	初版リリース

原本発行元: Microcrystal AG

原本:『RV-8063-C8 Application Manual Rev. 1.0』(英語)

原本発行日:2023年7月

日本語訳発行:株式会社多摩デバイス

〒214-0001 川崎市多摩区菅1-4-11 (TEL) 044-945-8028 (URL) https://tamadevice.co.jp (E-Mail) info@tamadevice.co.jp

日本語訳発行日:2025年5月26日初版発行

マニュアルの作成にあたっては細心の注意を払っていますが、マイクロクリスタルは第三者がこのマニュアルの情報 を使用することにより生じた、いかなる損害、及び特許や知的財産等への侵害についての一切の責任は負いかねま す。/本マニュアルの記載内容は改良等により予告無く変更される場合があります。/本製品は生命維持装置への 使用は認可されていません。

Information furnished is believed to be accurate and reliable. However, Micro Crystal assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. In accordance with our policy of continuous development and improvement, Micro Crystal reserves the right to modify specifications mentioned in this publication without prior notice. This product is not authorized for use as critical component in life support devices or systems.

Micro Crystal AG Muehlestrasse 14 CH-2540 Grenchen Switzerland

Phone +41 32 655 82 82 +41 32 655 82 83 sales@microcrystal.com www.microcrystal.com